全氟化碳乳剂¹⁹F磁共振成像的最新进展

Anne H. Schmieder¹, Shelton D. Caruthers^{2,3}, Jochen Keupp⁴, Samuel A. Wickline¹, Gregory M. Lanza^{1*}

摘要:¹⁹F 磁共振成像 (MRI) 的研究可追溯到 30 多年前。在这 30 多年间,氢原子核 (¹H) 成像技术迅速发展,并在全球得到 广泛应用,使得磁共振成像成为生物医学诊断成像技术中不可 缺少的支柱。多年来,由于各种原因,对¹⁹F 成像技术的研究 进展缓慢。但是在过去的十年间,尤其是最近几年,¹⁹F 成像的 研究和临床相关性呈爆发式发展。部分原因归结为 MRI 仪器、 ¹⁹F/¹H 线圈设计以及临床前和临床核磁共振仪的超高速脉冲序 列的发展。这些成就再加上对解剖生理学分子成像技术的兴趣 以及一批创新造影剂的出现使¹⁹F 的概念进入了早期的临床评 估中。本篇综述重点探讨以液态全氟化碳化合物为基础的造影 剂,并试图呈现这段丰富的研究和发展历史。

关键词:氟,磁共振成像 (MRI),双调线圈,全氟化碳,血管 生成术,细胞标记

1 引言

尽管以氢原子核(¹H)为基础的磁共振成像(MRI)在 临床应用的磁共振(MR)技术中占有很大比例,但是对 ¹⁹F MRI的兴趣,尤其是对利用全氟化碳(PFC)作为氟来 源的分子成像技术应用的兴趣在不断增加。对¹⁹F MR波 谱和成像技术的研究可回溯到1977年,当时对人体进行 ¹H MRI还处于萌芽阶段[1]。许多研究人员为早期¹⁹F成 像的技术基础作出了贡献[2-7]。

1.1 为什么用 ¹⁹F?

对¹⁹F核成像的兴趣反映出其作为定量MRI造影剂的 潜力。¹⁹F的天然丰度为100%,自旋量子数为1/2,旋磁比 为40.08 MHz·T⁻¹(比¹H的42.58 MHz·T⁻¹稍低),其敏感性 是¹H的83 %[8,9]。¹⁹F最外层有7个电子,而¹H最外层只有 一个电子,因此¹⁹F的化学位移(CS)对局部环境更为敏感。 ¹⁹F化合物的波谱特性变化范围可超过200 ppm[10,11], 使在极低场强下确定化合物的性质成为可能。与软组织 中55 %~75 %的水可提供大量的移动¹H信号不同,¹⁹F在 软组织中是不存在的,它只存在于骨骼和牙齿中,这些 ¹⁹F的短自旋--自旋弛豫时间(*T*2)使其在传统MR技术中几 乎显现不出来。因此,高密度外源性氟化物在靶点的聚 集为¹⁹F MRI提供了高噪声比(CNR)和定量成像的可行 性。此外,几乎可以忽略的¹⁹F背景信号避免了连续采样 及比较使用造影剂前后的图像差异,而这是在其他使用 超顺磁(如氧化铁)和顺磁金属(如钆)的分子成像中所必 须的。

1.2 全氟化碳 (PFC)

PFC纳米粒子体积的98 %是PFC,对于液态氟碳 (PFOB,1.98 g·mL⁻¹,498 Da)其氟浓度大约为100 mol·L⁻¹ [12]。由于氟的物化性质(所有化学元素中负电性最强的 元素)和C-F的特殊性,PFC纳米粒子与其他油性乳剂有 明显的不同[13]。全氟化合物中氟原子取代C-H中的氢 原子后可产生大且硬的化合物,这类化合物一般具有螺 旋结构,分子化学性质非常特殊而且通常内部结构错综 复杂[13]。C-F具有化学和热稳定性,其电子云密度较 大,能够阻挡其他化学成分的侵入,使其几乎不会发生 化学反应[13]。较大表面积与氟链的低极性共同增强了 化合物的疏水性。有趣的是PFC既疏水也疏脂。

很多临床前的动物实验都记载了PFOB的生物相容

¹ Division of Cardiology, Washington University School of Medicine, St. Louis, MO 63110, USA; ² Toshiba Medical Research Institute USA, Inc., Cleveland, OH 44143, USA; ³ Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA; ⁴ Philips Research Hamburg, Hamburg 22335, Germany * Correspondence author. E-mail: greg.lanza@me.com

Received 13 October 2015; received in revised form 7 December 2015; accepted 12 December 2015

[©] The Author(s) 2015. Published by Engineering Sciences Press. This is an open access article under the CC BY license (http://creativecommons.org/license/by/4.0/) 英文原文: Engineering 2015, 1(4):475-489

引用本文: Anne H. Schmieder, Shelton D. Caruthers, Jochen Keupp, Samuel A. Wickline, Gregory M. Lanza. Recent Advances in ¹⁹Fluorine Magnetic Resonance Imaging with Perfluorocarbon Emulsions. *Engineering*, DOI 10.15302/J-ENG-2015103

性。即使大剂量使用时,多数氟碳都是无害且无生理活 性的。在460~520 MW范围内, 纯氟碳具有无毒, 无致 癌、致突变和致畸的特点。PFC的组织半衰期从PFOB 的4天上升到全氟三丙胺的65天。PFC不在体内代谢,而 是以溶解的形式通过脂质载体进入血液循环最后通过 肺排出体外。但是,在替代输血的PFC应用中,笔者发 现PFC在肺中残余量会不断上升。因为PFC比空气密度 大, PFC残余会减少肺的顺应性; 这在一些早期型号的 PFC乳剂对兔、猪和猴的实验中表现尤其明显,但在老 鼠、狗和人体中尚未发现[13-15]。与PFC类似, PFC纳 米粒子通过单核巨噬细胞系统(MPS)(以前叫做网状内皮 系统(RES))被清除。这些细胞中积聚了高浓度的PFC,会 导致单核巨噬细胞释放细胞因子,从而出现类似感冒的症 状[12]。此外,由大容量输注或重复高剂量给药导致的带 PFC纳米粒子的肝细胞急性充血可引起组织暂时性物理压 缩并伴随轻度肝损伤,造成血清转氨酶可逆性升高。

除此之外,还应该认识到在啮齿类动物中,PFC纳 米粒子可快速进入胆道系统,随后进入小肠[17,18]。在 兔子和人等非啮齿类动物中,不存在这种快速的生理清 除过程[19]。因此,PFC纳米粒子的药代动力学、生物分 布和安全性在啮齿和非啮齿类动物中差别很大,从而影 响了粒子及其治疗荷载的补充给药剂量或药物安全界限 评估的给药剂量[18]。

PFC的早期临床前和近期临床研究均涉及了液体呼吸,因为PFC有较高的携氧能力和治疗早产儿表面活性剂缺乏的能力[20-25]。尽管这是一个有趣且有效的应用,但PFC的这种应用还是会随着选择性表面活性剂替代技术的发展被迅速取代。但另一方面PFC乳剂的携氧能力较高,人们会努力开发这类药物,因为人工血浆替代物研究没有取得显著成绩。

Fluosol-DA(日本绿十字社)是第一个通过批准,可 作为血液替代品的PFC乳剂,但它的血液动力学与表 面活性剂的选择高度相关[26–32]。后来发现的类似物 Fluosol-43代替了一种白蛋白表面活性剂,来对抗不稳定 的血液动力学。Fluosol-DA由全氟萘烷(PFD)和全氟三 丁胺的混合物组成,是一种具有复杂MR波谱的氟化物。 从MR细胞示踪的角度看,PFD的波谱成像或波谱信号 十分有限,即便在如今更加先进的设备和技术条件下也 依旧如此[33,34]。临床人工血液替代品的下一代PFC是 PFOB和氟二氯辛烷(PFDCO)。这些氟化物减少了肺内 气体堆积并缩短了组织对PFC进行生物清除的时间。利 用磷脂表面活性剂制成的第二代以PFC为基础的血液替 代品具有更好的生物相容性、更高的携氧能力和较少的 副作用,提高了生物清除率,并且符合大规模商品化生 产的条件。溶解在液态PFC中的氧很容易被缺氧组织提 取出来。但是,PFC的携氧能力与乳剂的平衡氧分压呈 线性相关。PFC的溶解氧曲线近似线性,而血红蛋白的 溶解氧曲线是S型的。多数溶解在PFC里的氧会在动脉 高压环境下提前释放,而在毛细血管网这些氧分压低但 对氧的需求最大的地方,PFC里剩余的氧已经很少。因 此,作为血液替代品的第二代PFC产品在临床上完全失 败了。

在这段时间内,Robert Mattrey博士与PFOB乳剂 平台联合会合作,进行了早期研究以确定这些粒子是否 具有为超声(US)、计算机断层扫描(CT)和MRI提供临床 成像的潜能[35-44]。尽管他们的大部分工作是利用液 态PFC纳米粒子进行超声和CT成像,并使用大量的液态 PFC纳米粒子进行血池造影,但只有用¹H MRI和PFOB 乳剂进行胃肠道(GI)造影(阴性对比)的研究得到了关注。 这一应用中,PFOB粒子在造影研究中比标准钡具有更显 著的成像和操作优势,但花费较高。而利用钡做GI造影 的花费远少于PFOB,因此最终用钡造影更胜一筹。

2 PFC 乳剂的 MRI

PFOB的稳定性和利用PFOB的人体实验为一项独特 的可修饰的纳米粒子诊断治疗平台技术提供了依据,这 一技术已经被笔者实验室(独自或与其他实验室合作)广泛 应用于大量医学实践中[16,45-79]。对于¹H MRI来说, PFC纳米粒子为高负载亲脂性钆螯合物提供了一个稳定 的平台,从而增强了靶向MR分子成像。但随着在临床实 验中对钆的关注度的逐步升高(钆会导致肾源性系统纤维 化和急性补体激活)[80-82],靶向PFOB纳米粒子用于 3 T MR¹⁹F成像的技术被重新审查,目的是为了满足临床 的需求。

近来,氟碳标记成为一种常用的氧化铁纳米粒子细胞标记和示踪的备选方法[83–90]。研究人员使用了环状 全氟-15-冠-5-乙醚(PFCE)以及线性全氟聚醚(PFPE)分 子,该分子具有重复的—CF₂CF₂O—单元,可提高¹⁹F的 信噪比(SNR)和可检测性[63,91–101]。当用作靶向MR 分子成像时,肝和脾中PFCE的大量堆积以及较低的生物 清除率为实现临床应用增加了一道明显的安全屏障。在 进行细胞示踪时,PFC乳剂粒子被体外培养的细胞吞噬 而内在化,然后可根据影像进行局部注射,从而避免全 身静脉注射PFC乳剂导致的PFC过量。在这种情况下, 这些PFC化合物长时间的体内滞留可以允许其在较长时 间内持续性地进行细胞示踪。由于这种细胞示踪技术的 出现,近来有关PFPE的研究获得了大量关注。其大于 40的化学等值氟原子简化了¹⁹F核磁共振(NMR)波谱,且 *T*1/*T*2比较小。对于PFC来说,端基可以实现其他化学功能,如携带染色剂[92,102]。

3 MR 对 ¹⁹F 的可检测性

由于生物系统利用的PFC浓度较低,所以传统的¹⁹F成 像SNR与¹H MRI相比也较低。虽然有些应用采用了大剂 量高浓度氟化物以生成有效的¹⁹F影像,但出于上述安全 性考虑,人体内应用的高剂量PFC(超过1~5 g/kg)应受到 限制[12]。迄今为止,在5-氟尿嘧啶输注化疗的全身扫描 中,基于表面线圈测量的磁共振波谱(MRS)研究证明,在 1.5 T磁场中,当成像像素体积为33 mL且成像时间为6 min 时,可检测到的¹⁹F的最小浓度为30 μmol·g⁻¹[103]。对于 11.7 T的更高场强来说,在0.5~1.2 g样本上采样1 h可以测 到5-氟尿嘧啶波谱的最低浓度为5 nmol·g⁻¹[104]。

PFCE包含20个¹⁹F共振等效核,该等效核可丰富信 号,使得在9.4 T 磁场中,当成像时间为4 min且像素体 积为60 μ L时可以测到的最低浓度为30 μ mol·g⁻¹ [67]。 Partlow等[63]的相关测量证明,在11.7 T的磁场中,用 体外¹⁹F MRS 最少可以测到2000个PFCE标记的细胞 (SNR>3) 或10 000个PFOB标记的细胞,用体外¹⁹F MRI 可以最少测到6000个PFCE标记的细胞。对于1.5 T的 MRI来说,局部注射的4×10⁶个PFCE标记的干细胞可产 生强烈的氟信号。在不加转染辅助试剂的条件下,将细 胞与PFC共同孵化12h,细胞内PFC含量可达到每个细胞 含3 pmol。除此之外, PFCE的r1对比敏感性随着磁场强 度的增大而升高。这是有利的,因为临床MR设备的磁感 应强度已从3T上升到了7T,甚至更高。但是,这也意味 着非靶或脱靶的¹⁹F噪声已经变得更加明显。显然, PFC 粒子显著增强了局部氟的浓度,从而使细胞示踪和靶向 分子成像的研究成为可能。

在临床场强下(3 T或更低),可以通过加入弛豫时间 改性剂进一步提高¹⁹F信号的检测强度,比如将负载钆的 脂质体(Gd³⁺)嵌入到PFC纳米粒子外表面活性剂的外层。 Neubauer等[105]证明,在1.5 T磁场下,在表面加入镧系 元素可以使直径为200 nm 的PFC纳米粒子的¹⁹F信号增强 4倍。在体外表现为当PFC纳米粒子以凝血块的纤维蛋白为 靶点时,造影剂信号会增强125 %。Harvey 等[106]证实, Gd³⁺表面浓度的变化和与粒子表面有关的镧系金属位置 的改变会抵消这种¹⁹F信号的增强。de Vries等[107]在5种 不同磁场强度下,利用3种不同的PFC乳剂研究了¹⁹F信号 增强可以调节的观点。在利用PFCE和其他三种亲脂性钆 螯合(Gd³⁺DOTA-DSPE,Gd³⁺DOTA-C6-DSPE和Gd³⁺ DTPA-BSA)进行实验时,他们注意到由于其镧系金属位 置更靠近PFC核心,所以Gd³⁺DTPA-BSA与其他两种螯 合剂相比对¹⁹F R1的影响更大;而其他两种螯合物更靠 近外侧水分子,远离PFC核心区。在典型的临床磁场强 度下(1.5~3.0 T),Gd³⁺DTPA-BSA对¹⁹F R1会产生有利 影响,但在较高磁场强度(6.3~14 T)下,补充性的Gd³⁺不 能改善¹⁹F R1,反而会逆向增加¹⁹F R2。由于¹⁹F r1的内 在弛豫率会随着场强增加而升高,如在临床前动物扫描 仪中使用的磁场,PFC纳米粒子利用镧系元素进一步增 强¹⁹F信号的需求减弱了。

4 MR¹⁹F 线圈

尤其在临床场强(3 T或更低)下,采用氟造影剂的 MRI面临着低敏感度的问题。¹⁹F分子成像的实现通常 采用下面的方法:通过配体定向导引,在特定病理区积 聚形成PFC有效浓度;通过影像引导,在感兴趣区域对 PFC标记的细胞进行局部注射;使用单一共振¹⁹F分子; 采用化学位移校正[108]和超快速MR校正[109–111],以 及对多频谱的氟造影剂进行压缩成像[100]。同时,射 频(RF)线圈设计的明显改善,尤其是实时¹⁹F/¹H双谱采 集技术的出现,已经成为¹⁹F MRI 一个重要的进步 [73, 112–118]。

通常¹⁹F/¹H MRI采用的单频射频线圈的频率需要调 节,以对应¹⁹F或¹H的谐振频率,从而获得最大的SNR。 通常,这种方法耗时长,并且可能导致在调节线圈频率 时出现线圈移动或错位,从而干扰后处理时的¹⁹F/¹H影像 配准。采样双频线圈,如一个¹H容积线圈和一个¹⁹F表面 线圈,可以有效地获得单个信号,但它们内在不同的敏 感模式会导致在两个频率数据结合时产生不一致的影像。 利用自动调谐的射频线圈(使用外部电脑程序)调节共振频 率是一些昂贵成像系统的一个选择方案,但同时也导致 系统复杂性增加[119]。总的来说,¹⁹F/¹H MRI成像的单 频模型射频线圈还需要解决几个问题:低SNR,射频磁 场(*B*₁)不均匀导致的伪影信号,以及¹⁹F/¹H影像配准时的 误差。

为解决这些问题,笔者提出了双频¹⁹F/¹H双线圈 的方法。传统的双频线圈(利用分流和多极电路)适合 两个间隔很远的谐振频率,如¹H(42.58 MHz·T⁻¹)和 ¹³C(10.71 MHz·T⁻¹)。但是,这种传统方法并不适用于 ¹⁹F/¹H MRI线圈,因为¹⁹F的旋磁比为40.08 MHz·T⁻¹,和 ¹H很接近。一个新的设计方法是采用多信号输入输出端 口,然后通过一个通用的阻抗匹配电路实现多频率。另 一个方法是采用基于鸟笼谐振器的特殊共振性的双频线 圈,也就是使用两个交叠的线圈或者同一个鸟笼线圈的 不同谐振模式来达到双频率共振。

基于Philips研究中心的研究报告 [120], Hockett等 [118]提出了一种改进的设计以达到对兔子膝关节炎模型 的成像要求(图1和图2)。这种设计将平行输入电阻、电 感和电容的双调谐电路(RLC)与Ballon等[121]和Jin等 [122]提出的开放线圈设计电路串联,从而扩展了双频线 圈同步成像的设计概念。开放线圈的设计采用柱状多回 路设计以达到与鸟笼线圈类似的电流分布,从而提供了 较大的线圈体积且保持了足够的敏感度以支持在3 T上对 兔子膝关节进行¹⁹F/¹H同时成像。该设计的一个独特之处 在于其可以实现对生理组织结构 (¹H)和外源造影剂(¹⁹F) 同时成像,排除了图像配准问题。这之后,Hu等[117] 拓展了Hockett等[118]提出的耦合共振模型的设计方 法,将其扩展为更加通用的设计,同时提供了多种配置 的¹⁹F/¹H双频线圈制造技术。就这些方法来说,两种共 振频率以及不同阻抗下正常工作所需阻抗的匹配是一个 关键的设计问题。Hockett等[118]及之后的Hu等[117] 证明了串联的电容匹配网络在理论上可以有效地将¹⁹F 1^{1} H频率匹配到50 Ω。Hu等在4.7 T的场强下使用该 $^{19}F/^{1}H$ 双频鸟笼RF线圈进行了小鼠活体成像(图3)。通

图 1. 双频线圈作为两个独立的 LCR 共振器 (L₁, C₁, R₁) 与 (L₂, C₂, R₂) 通过电容 C₃ 进行电连接。(a) 等效电路图; (b) SPICE 电阻磁输出,模仿 两个电容连接共振器。3 T 场强下,¹⁹F 是 120.43 MHz,¹H 是 127.49 MHz。 见参考文献 [118]。

过采用马鞍形线圈和正交解耦的¹⁹F表面线圈快速获取 了¹⁹F和¹H信号,他们成功实现了¹⁹F均匀激发和高SNR, 同时保持了¹H信号的SNR以获得解剖图像。

近来,Ji等在Niendor的实验室研究了7.0 T下¹⁹F/¹H 双调谐线圈在人体中的应用[116]。应用于人体膝关节成 像的模块化八通道¹⁹F/¹H收发器的RF线圈也已经被设计 出来。实验结果显示,可利用¹⁹F-非甾体抗炎药膏对¹⁹F MRI进行定位。成像空间分辨率很高(1.5 mm × 1.5 mm), 信号采集也很快——扫描时间约为3 min。将这种八通道 高敏感性线圈放在患者近旁,通过调整不同通道的幅度 和时相来调节发射磁场(*B*₁⁺)的形状,从而减小超高频率 下发射磁场的不均匀性。

5 MR¹⁹F PFC 成像

尽管¹⁹F检测的高特异性是由于人体内缺少¹⁹F,但这 种信号的缺失同时也会使采样优化和对运动伪影的评估

图 2. (a) 双频线圈和支持电路图。图的左上角显示了 6 脚 (5 圈) 线圈结 构。 (b) 兔膝关节炎的 ¹H 高分辨率图片,突出了解剖特征。(c) 被测波 谱线与 PFCE 乳剂中的氟共振波谱线一致,以三氟乙酸 (TFA) 作为参考 标准。注射 PFCE 乳剂后同时获取 (d) ¹H 和 (e) ¹⁹F 兔膝关节图片。见参 考文献 [118]。

图 3. (a) 4.7 T场强下用于小鼠成像的¹⁹F/¹H 双频激活解耦、只输出马鞍型线圈的电路设计。 (b) 开关打开和闭合时,激活解耦的双频马鞍型线圈的 S11。(c, d) 开关打开和闭合时,沿着激活 解耦的双频马鞍型线圈的直径和轴测得的标准化 B₁ 磁场。见参考文献 [117]。

变得困难。传统MR扫描仪会自动进行不依赖操控者的准备工作,根据激发 信号设定期望的翻转角、RF线圈和患者来优化输出功率。这种功率的优化要 求快速检测到高SNR的信号。而¹⁹F MRI的低SNR无法使一个¹⁹F RF线圈进行 这样的功率优化。

为了使临床3 T扫描仪获得更好的同步¹⁹F/¹H图像,Keupp等[114]设计了 一种新型设备,修改了MRI频谱发射仪和软件,同时保持其他硬件不变(如 梯度磁场和静磁场)来实现¹⁹F/¹H MRI。这套设备增加了非氢质子的独立射 频信号发生器和接收设备以实现¹H和¹⁹F的同时激发。适合¹H和¹⁹F的RF脉冲 波形也被独立创建出来,并且被同时送入RF信号功率放大器中。利用这种设 备,每个患者的¹⁹F/¹H双调谐线圈的功率可以通过高¹H信号得到优化,随后 将该优化结果应用于¹H和¹⁹F图像[123]。因此,RF线圈对¹⁹F信号敏感度的空 间不均匀性(存在于所有MRI线圈中,通常通过临床扫描仪的"幕后"进行校准) 可以通过¹H通道确定[73]。这是实现临床动态定量¹⁹F分子成像所必须的校准 步骤。

由于组织水分丰富,¹H扫描的扫描时间可能很短;而¹⁹F信号的缺失却需 要通过延长信号采集时间补偿。长时间扫描又容易出现因患者身体或器官本 身移动而产生的运动伪影,从而导致因图像模糊或¹⁹F/¹H错误配准造成的信 号退化。¹H和¹⁹F信号的同时读取可实现根据¹H图像对运动伪影的校正,然后 将数据结果应用于校正¹⁹F图像[114]。利用3D放射状k空间的填充快速对¹H 图像采样(即以比完全采用¹⁹F图像更高的时间分辨率),可以校正长时间的¹⁹F 采样形成的运动伪影,从而提高¹⁹F的SNR和量化准确性[114]。

¹⁹F MRI的一个技术难题是¹⁹F 的T2弛豫时间在化学位移上引起的各个¹⁹F

频率的不一致。为了解决多核MR的 这一问题, Mastropietro等[124]优 化了快速自旋回波(FSE/RARE)的序 列参数。尽管这一方法对部分¹⁹F分 子有效,但是具有特殊波谱性质的化 合物还需要根据独特的局部环境进行 参数调谐。对PFOB这类多¹⁹F频谱的 化合物,尽管¹⁹F最密集的频谱群可 以用来获取信号,但由于略过了该化 合物的其他频率的信号,所以检测到 的SNR会减弱。为获取完整的¹⁹F波 谱信息,笔者通过回声不对称和最 小二乘估计(IDEAL)法进行迭代分 解来研究化学物质的分离技术,但 是这一技术需要复杂的静磁场(δB_{0}) 校正[125,126]。为捕捉PFOB的所 有¹⁹F信号,除了脉冲时相编码(PPE) [128],还需要进行回声时间(TE)编 码实现弛豫校正 [127]。有趣的是, 像氟超速涡轮波谱成像(F-uTSI)这种 不依赖化学位移的技术已经被证实, 其可对¹⁹F波谱进行完整的采样,尽 管采样时间相当长[129]。

考虑到破坏性的相位干涉,研 究者采用了一种更直接的¹⁹F成像方 法,在氟原子核去相位之前就进行信 号采集,这与在超短回波时间(UTE) 内成像的原理一样[130]。通过在波 线去相位和发生显著的横向弛豫之前 捕捉NMR信号,UTE有能力增强¹⁹F 的SNR [109]。平衡式稳态自由进动 (bSSFP)是一项新技术,每个重复时 间(TR)内的梯度磁场脉冲通过相反 极性的脉冲得到补偿,从而产生单 一、聚时相的磁化矢量[131]。因此, SSFP序列保持了大部分初始磁化矢 态MR信号。平衡的SSFP已经得到 了有效应用,用来对CellSense™具 有单一¹⁹F频率的PFC标记的间叶细 胞进行成像[132]。为了实现对多¹⁹F 频率的物质(如PFOB等)的高敏感性 检测,将具有3D辐射状读取功能的

双频¹⁹F/¹H UTE平衡SSFP应用于临床3 T扫描仪来实现 PFC成像(图4)[111]。PFOB的大部分氟核(17个氟原子核 中的12个)位于1 kHz化学位移范围内的CF₂共振频率中, 在UTE-SSFP序列的90 μs的TE内可以捕捉到这些氟核。 短的TE在明显地去相位后保持了NMR信号,避免了共 振产生的破坏性叠加。通过CF₂谱线获得的SNR多于通过 3D辐射状采样(25%)和自由感应衰减(FID)读出的SNR有 效性缺失的补偿。

图 4. 同时的 3D¹⁹F/¹H UTE-SSFP 脉冲序列。包含超短回声时间内的同时¹⁹F/¹H RF 激发和随后的 FID 采集,使用平衡梯度 (*m*, *m*,) 以及 Wong 型放射状读出轨道。见参考文献 [111]。

UTE-SSFP 技术使非氢原子的多核成像具备了一些 优势。当将¹⁹F造影剂结合到靶向组织时,由于分子运动 的减少,这些造影剂可以更进一步地减少*T*2弛豫[113]。 平衡式SSFP方法为成像标记贡献了高SNR,并且由于 *M*₀的饱和度表现出长*T*1和短*T*2,梯度回波技术的弛豫 条件是不利的。通过改变¹⁹F特定组谱线的激发频率和激 发宽度,可以选择定制探针用于UTE-SSFP成像。除此 之外,可以将UTE-SSFP序列与同步双核采集技术相结 合。一旦利用该序列获取了复杂的波谱信号,3D放射状填 充k空间数据就会被直接重建,而不用后处理,这一点与 化学位移成像系统相反。3D放射状数据为多种分辨率重建 提供了依据,使得在不同波谱分辨率上对¹⁹F和¹H数据的分 析成为可能,并且通过¹H数据亚样本为非氢原子信号的运 动校正提供了机会[114]。

然而,UTE-SSFP并不是所有PFC理想的采集序 列。对具有单一共振峰值的造影剂如PFCE或PFPE来 说,SNR有效性的降低可能是由于3D放射状k空间样本 和FID读出所致。除此之外,为了使PFC在标准梯度系统 中具有合适的3D放射状读出的波谱分辨率,UTE-SSFP 还要求所选择的特定谱线必须出现在1~2kHz宽度内。对 PFOB来说,¹⁹F谱线跨越1kHz宽度,但是其他PFC并 不是这样。对于与PFC乳剂相比¹⁹F核较少的其他化合物 来说,尤其是当通过在高于现有临床场强下成像来获取 SNR时,零时回声(ZTE)等UTE成像技术可作为备选方 法[109]。现代MR设备的超速成像能力使得十年前不可 能的¹⁹F成像技术成为可能。

6 ¹⁹F 细胞示踪与巨噬细胞标记

关于对离体细胞进行PFC乳剂标记后在体内进行细 胞示踪的概念,已经有文献进行过很好的回顾。但由于 在过去几年间,这一概念已经从实验室研究过渡到了临 床应用[93,99],所以值得在此再次回顾。MPS吞噬经 静脉注射的PFC纳米粒子是PFC在体内被清除的基本机 制。体内定点标记的方法是通过静脉注射较大量的PFC 纳米粒子进入血液,这些PFC纳米粒子紧接着被多种亚 型的白细胞、单核细胞、巨噬细胞、嗜中性细胞和树突 细胞(DC)吞噬。这些¹⁹F标记的白细胞通常残留在脾中, 然后被促炎细胞因子引导聚集在发炎部位,这些部位的 ¹⁹F标记的白细胞可以通过MR进行无创监测。巨噬细胞 和MPS原位PFC标记的概念最早在鼠肿瘤和脓肿的¹⁹F 热点检测的研究中受到了重视[133],后来在心肌梗死 和肿瘤中检测出了PFC乳剂;这些成像方法不仅限于 19 F MRI,还包括超声和CT [5,35-37,134-136]。此外,探 索脾吞噬功能下降的研究证明了PFC粒子的摄取也相应 地减少了,从而为证明在PFC粒子清除过程中器官的重 要的MPS作用提供了早期证据[137]。随后,原位细胞标 记的¹⁹F MRI被用来检测与自身免疫疾病有关的炎症反应 [67],这些炎症反应存在于啮齿类动物的实验性变态反 应性脑脊髓炎(EAE)、人类胰腺细胞[138]、缺血性心肌 炎和脑炎[139]、LPS引发的肺炎[140]、同种异体移植排 斥[96]、神经炎性周围神经疾病[141]和胶原蛋白引发的 关节炎[97]中。除此之外,这些研究还指出了炎症严重 程度与¹⁹F MRI无创信号强度之间的定性关系。这一概念 实际上已经得到了公认,在某些应用上可能会比以氧化 铁为基础的细胞示踪技术更受青睐。氧化铁是非常敏感 的细胞标记物,可能会由于超顺磁伪影而降低软组织分 辨率,但¹⁹F就避免了这一问题。磁化伪影的消除使得组 织和细胞边界成像的细节得以保存。

在许多报告中,特定细胞如树突细胞(DC)[94] 和干细胞[63]在体外进行标记,随后被注射或植入体内。 ¹⁹F成像技术准确地证实了这一细胞标记技术,甚至还证 明了通过利用不同PFC标记可以同时区分不同细胞类型 并长时间监测细胞在体内的迁移。当在体外标记细胞时, ¹⁹F对特定细胞标记的效能已众所周知,其可被用于完善 数据的生物和定量解释。与之相反,原位标记技术可以 定性示踪被¹⁹F标记的细胞,但是不能确认成像的是哪种

细胞,也不能通过测得的¹⁹F信号强度进行量化。

最近, Ahrens等[98]利用PFPE纳米粒子(CS-1000) 在 大肠腺癌患者中进行了免疫治疗的成熟树突状细胞的¹⁹F 示踪标记。在PFPE药物进行临床使用前,在不产生副作 用的条件下,研究人员严格检测了100倍预期用量剂量的 急性期毒性、细胞毒性和基因毒性。在不使用辅助的阳 离子脂质和不改变细胞表型的条件下, PFPE被合并入非 吞噬细胞中。需要注意的是只有活的细胞才能够被PFPE 标记。被注射入体内后死亡的细胞会释放PFPE,紧接着 可能被巨噬细胞吞噬而导致假阳性信号。这在细胞标记 技术中是一个普遍存在的问题,用氧化铁进行细胞标记 的技术也是如此。植入后的树突状细胞在注射点被看成 可以被立刻检测到的"热点",但这个"热点"的信号强度 第二天就会减弱50%。这个结果证实了标记细胞已被成 功注入到体内。在两个患者中得到的结果表明,该技术 还可以估计局部被标记的细胞数量。但是,由于未知原 因,进一步的细胞迁移还没有被检测到,这可能是由于 注射剂量不足、标记的细胞早期死亡、树突状细胞的迁 移或者这个治疗方式的有效程度所致。尽管该临床研究 使用了原始数据采集的方法和非最优的MRI线圈(表面线 圈)设计,但其仍证明了临床扫描仪中¹⁹F成像技术的有效 性。现在我们已经认识到了线圈、脉冲序列设计和移动 校正的进步,并将其应用到¹⁹F成像上,这将可能会更好 地改善诊断结果。

7 ¹⁹F PFC 血栓纳米分子成像

利用¹⁹F成像和PFC纳米粒子的分子成像技术进行血 栓靶向诊断的技术可被追溯到十多年前。血栓富含可靶 向成像的分子抗原决定簇,特别是纤维蛋白、凝血酶和 其他物质,如血小板等。Yu等[142]证明了以纤维蛋白为 靶向的超顺磁PFOB纳米粒子的高场强分子成像技术,认 为表面携带Gd³⁺-DTPA-BOA的PFC粒子不仅可成为¹H的 *T*1加权造影剂,而且可以实现相应的¹⁹F成像。尽管当时 没有发现Gd³⁺-DTPA-BOA对纳米粒子表面¹⁹F的R1/R2 的强化作用,但很显然这一因素有助于增强¹⁹F信号。

在随后的研究中,使用超顺磁PFOB纳米粒子在4.7 T 场强下进行双质子成像和定量¹⁹F成像的技术被证实,并 由1.5 T场强下的¹H的弛豫率和对放射性钆金属进行中子 活化分析得以验证[55]。通过特异、定量地检测离体人 体颈动脉内膜切除术获得的破裂斑块来验证这一概念的 临床相关性(图5)。通过使用PFCE及PFOB两种PFC纳米 粒子靶向成像纤维凝血块,¹⁹F MRI进一步验证了这项技 术对病理靶点不同表型特征的无创检测的潜能。这个实 验潜在的假设是复杂组织的病理上的各异性需要多个生物标记物,而受体表现水平的特殊比例可以用来定性或诊断疾病。在该实验中,PFCE纳米粒子表面螯合了钆。 ¹⁹F图像通过采用稳态梯度回波技术获取,频率波谱通过选择和非选择采样容积获得。利用传统*T*1权重成像序列获得的血栓图像的¹H信号强度与超顺磁的PFCE纳米粒子的浓度呈线性相关。最后所有的血栓都可利用宽带¹⁹F成像进行检测,然后通过选择性窄带激发PFCE或PFOB纳米粒子单独成像。

在凝血级联系统中,凝血酶代表了直接且特定抗凝剂 的一种主要靶点,通过将凝血酶抑制剂(Phe[D]-Pro-Argchloromethylketone,或PPACK)络合在胶质纳米粒子上 可获得该靶点[143]。该治疗诊断学概念首次提出了一 种具有延长和高度定位治疗作用(由其多价凝血酶吸收 粒子表面获得)的抗凝剂。在体内急性动脉血栓模型中, PPACK纳米粒子比肝素和非络合的PPACK在抑制血栓上 起到的作用更加突出。¹⁹F MRS(11.7 T)证实了PPACK纳 米粒子与急性血栓损伤位点的特异性结合,¹⁹F MRI证实 了PPACK纳米粒子在动脉内的定位。有趣的是,尽管这 些凝血酶抑制粒子只能延长10 min的系统出血时间,但 它们延长了凝块形成的抑制时间。

最新研究报告了利用¹⁹F MRI和α2-抗纤维蛋白溶酶 (α2^{AP})作靶向的PFC纳米乳剂在血栓形成过程中的非破坏 性判定[144]。配体功能通过使用以甾体为基础的后插入 技术在轻度耦合条件下获得。小鼠下腔静脉血栓靶向图 像的形成通过在9.4 T下同时获取¹H和¹⁹F MR图像来完 成,该图像具有很好的SNR和CNR。在实验引起的肺血 栓栓塞症的诊断中对α2^{AP}-PFC概念也进行了评估。α2^{AP}-PFC将血栓作为凝块形成的靶点,但经过60 min的血栓 诱导后并没有发现可检测的¹⁹F信号。该结果显示,通过 血栓激活因子XIIIa的纤维蛋白的交联是彻底的,并指出

¹H image: 256 × 256 matrix; 0.5 s TR; 7.6 ms TE; 1 mm slice thickness; 2 signal averages ¹⁹F image: 64 × 32 matrix; 1.0 s TR; 4.5 ms TE; 26 mm slice thickness; 2 signal averages

图 5.4.7 T 下获得的颈动脉内膜切除手术样本的质子与氟成像。请注意 叠加在 71 加权对比图像上氟像素证实并量化了特定纤维蛋白信号;一些明显的 71 高亮区域与氟信号不符合,很有可能不是来自超顺磁纳米 粒子。(高亮度区不一定都代表造影剂。)见参考文献 [55]。 使用α2^{AP}-PFC可以区分溶栓不稳定的血栓和药物抵抗血 栓。这一治疗方法可以改善血栓治疗的风险–效益平衡。

PFC纳米粒子的核心有大量的氟原子,可以作为以 凝血块纤维蛋白为靶点或其他靶点的化学交换饱和转移 (CEST)造影剂的定量参考标准[145]。CEST螯合物有可 交换的质子(-NH, -OH等), 这些质子可以在特定化 学位移(CS)频率上产生共振,从而将其与周围大量的水 信号区分。应用合适频率和功率的RF前脉冲可以饱和可 交换的质子,这些质子随之进入到周围的自由水中,从 而减弱磁平衡。通过调整脉冲序列参数,携带超顺磁 CEST(PARACEST) 螯合物的功能化的PFC纳米粒子可 实现CEST的"开/关"对比。CEST造影剂的重要特性 避免了以往以¹H为基础的分子成像需要对比注射造影剂 前后的图像的情况。除此之外,新设计的PARACEST PFC纳米粒子在凝块表面可产生高达10的CNR, 解决 了早期PARACEST 造影剂低对比敏感度的问题。除通 过添加大负载PARACEST造影剂到PFC纳米粒子表面 来降低可检测到的有效信号的门槛外, PFC核本身还为 靶向结合粒子的定量评估提供了¹⁹F信号。因此,¹⁹F和 PARACEST的两种特异信号的联合作用直接表明了靶向 结合的PARACEST体素的浓度。而且,与凝块表面结合 的PARACEST纳米粒子产生的信号对比度比自由悬浮 的PARACEST纳米粒子高两倍多。这可能是由于纳米 粒子迁移率的减少和水交换动力学的降低,或是由于增 加的结合水时间把CEST的检测界限从自由悬浮粒子的 4.13 nmol·L⁻¹降低到与靶点结合粒子的2.30 nmol·L⁻¹。 因此, CEST和PARACEST发展成为重要的MR对造影 [144,146-178]。

8 ¹⁹F 新生血管生成成像

新生血管生成是正常组织(如子宫内膜、骨生长板)、 伤口愈合和病理改变(如风湿性关节炎、动脉粥样硬化、 哮喘和癌症)的重要早期特征。血管生成的检测可通过内 皮细胞α_vβ₃整合素表达的分子成像技术来实现。高分辨 率¹⁹F成像技术最先被用于新西兰大兔的主动脉瓣膜疾病 模型以检测并量化新生血管。在这个实验中,兔子被静 脉注射了以α_vβ₃为靶向的PFC纳米粒子或非靶向的PFC纳 米粒子[70]。切下来的主动脉瓣叶呈增厚且发炎的状态。 兔子主动脉瓣叶在11.7 T下的¹⁹F MRS结果显示了注射 的靶向PFC纳米粒子比非靶向PFC纳米粒子的¹⁹F信号强 220 %。除此之外,在一个竞争性抑制的实验对照组中, 动脉瓣叶¹⁹F信号减少42 %的结果支持了靶向PFC纳米粒 子的特异性。在另一动脉粥样硬化的兔子模型中,通过 使用临床扫描仪在3 T下进行¹⁹F MRI,证明了以α_νβ₃为靶 点的PFC纳米粒子在检测新生血管生成中的有效性,而 且该活体成像结果与离体免疫组织化学结果一致。

尽管在高场强下血液中的背景噪声较高,但通过在 7 T下使用α,β₃-PFOB纳米粒子对小鼠的U87恶性胶质瘤 进行分子成像,结果证明了在肿瘤中的靶向组浓度高于 对照组 [179]。这些MRI图像结果通过组织学和荧光显微 镜成像得以证实。这个实验的重要性在于这是第一个利 用整合靶向PFC纳米粒子获得的脑肿瘤新生血管的¹⁹F图 像。该课题组后来研发了具有更长循环半衰期的聚合物 包装的PFOB,并用Arg-Gly-Asp(RGD)配体对其进行了 表面功能化,然后证明了该PFOB也可以用于¹⁹F肿瘤成 像[180,181]。

如前所述,新生血管形成是炎症性肺病如哮喘等疾病的重要组成部分。无创评估患者肺部的早期新生血管 扩张是非常困难的,尤其是定量评估。除了明显的肺肿 瘤,薄壁肺间质组织水分子的缺乏及呼吸运动和化学位 移伪影的存在使得器质性疾病的肺部¹H MRI非常具有挑 战性。可以用以 $\alpha_{\nu}\beta_{3}$ PFOB纳米粒子为靶向探针的¹⁹F/¹H MR分子成像技术来直接测量新生血管的形成。为了验证 肺部¹⁹F/¹H MRI技术的有效性,研究者采用了大鼠左肺 动脉结扎(LPAL)模型进行了在体成像[182]。LPAL诱导 支气管周围和大血管近端的结扎区域[182]。

肺主动脉被结扎3天后,大鼠被静脉注射了以 α , β ,为 靶向的PFC纳米粒子,然后在3T下进行了同步的¹⁹F/¹H MRI [183]。与非靶向粒子注射组相比,注射靶向粒子 的急性肺缺血大鼠的肺和支气管的¹⁹F信号都有了显著增 强(图6)。相反,在作为对照的右肺中,无论注射的是靶 向还是非靶向PFC粒子,在大鼠的肺和支气管中都没有 发现¹⁹F信号。 α , β ,靶向PFC粒子的竞争性抑制减少了缺 血性左肺中¹⁹F的血管生成信号,该减少与非靶向组获得 的¹⁹F信号没有区别(图7)。荧光显像和光学显微镜检查表 明,在大支气管和大肺血管的血管内壁聚集了大量纳米 粒子。这些结果证明, α , β -PFC纳米粒子的¹⁹F/¹H MR分 子成像技术为检测受伤肺中新生血管的形成提供了一种 直接的和可重复的检测方法。

其次,经过验证的¹⁹F成像技术被应用于检验与慢性 哮喘气道有关的异常支气管血管的形成(导致气道壁持续 水肿和大量白细胞持续聚集的一个可能因素)[184]。屋 尘螨(HDM)与哮喘发病之间的关系已被确立。将大鼠暴 露于HDM两周后,通过抗原刺激研究一周、两周和三

图 6. 三天后 LPAL 大鼠和假手术大鼠左右 肺信号的对比,分别为注射非靶向粒子组, α,β_3 ·靶向粒子组,或竞争性抑制 α,β_3 -PFC 粒子组给药2h后。相比于无靶点的PFC粒子, 接受 α,β_3 靶向纳米粒子的LPAL 大鼠左肺具 有最强的¹³F 信号 (P = 0.005)。 α,β_3 靶点的油 纳米粒子的竞争性抑制降低了肺¹³F 信号 (P = 0.000)。假手术组大鼠的¹³F 也显著降低 (P = 0.002)。见参考文献 [183]。

周后血管增生的程度。在这个实验 中,利用¹⁹F/¹H MRI来评估血管增 生的时间曲线并用显微镜对相关结 果进行定量分析。乙酰甲胆碱刺激 被用来评估哮喘的特征,即气道的 高反应性。将大鼠暴露于HDM三周 后(6次吸入量),气道壁(周长0.5~3 mm)上成熟血管数量显著增加。这 些血管的变化伴随着气道对乙酰甲 胆碱反应的增强。但是,将大鼠暴 露于HDM一周或两周,并没有观察 到血管数或乙酰胆碱气道反应性的 增强。活体MRI检测是在3 T场强下 进行的。经过一周或两周HDM暴 **露的大鼠被注射了**α,β,-PFC纳米粒 子, 然后用¹⁹F/¹H MRI检测了气道¹⁹F 信号。MRI结果显示新生血管的形成 出现在气道反应性增强之前(图8)。 除此之外,当病理学或临床症状出现 时,¹⁹F分子成像显示出急性血管形 成的扩张期已经过去。

¹⁹F/¹H在肺成像的应用中特别重要。这是因为MRI不能显示弥漫性肺病,尽管这类疾病的发病率和治疗花费在不断的增长。虽然CT经常被用于研究肺部病变,但总的来说,CT 对早期疾病的敏感性较差,而且医学干预会对CT检查结果产生较大影响。此外,对于患慢性疾病的患者

图 7. 注射 α,β₃ 靶向或无靶向 PFC 纳米粒子 2 h 后,大鼠胸腹的 ¹⁹F/¹H 成像 (绿色代表纳米 粒子)。(a) 注射了 α,β₃ 靶向纳米粒子的大鼠冠状平面,图中显示了靠近心脏左肺出现的 α,β₃ 靶向纳米粒子的堆积,以及肝脾中网状内皮组织 (RES) 颗粒的清除。右肺发现极少量信号。 (b) 左肺靶向纳米粒子聚集的矢状位图像。(c) 心脏水平轴位图像,图像显示了左肺结合的靶向纳 米粒子,但右肺没有信号。(d) 无靶向纳米粒子的大鼠冠状位图像,图中显示了靠近心脏左肺无 可见信号,但是肝脾有明显的 RES 吞噬清除的粒子。(e, f) 无靶向纳米粒子的大鼠胸腔的矢状和 轴位成像,图像显示了受伤肺内可忽略不计的粒子信号,右肺没有观察到信号。在所有这些图 像中,在周围肌肉组织中没有对脱靶造影剂进行评估。上面所示的 ¹H 图像是利用临床 3 T 扫描 仪获得的高分辨率胸腔解剖图像。黄色箭头显示该特定 MRI 序列的边缘环状伪影,这在高信号 区域很常见 (如肝和脾)。见参考文献 [183]。

图 8. (a,b) 使用 $\alpha_i\beta_3$ 靶向 PFC 纳米粒子对经 PBS 和 HDM 处理两周后的大鼠的 ¹H/¹⁹F 双频同步 MR 分子进行成像。请注意将均匀的 ¹⁹F 权重图像应用于所有动物图像,体素大小设置为原始的 1.25 mm×1.25 mm×1.25 mm。(c) 与 PBS 对照组相比较的任意单位上的 HDM 敏感性的三周 效应的总 ¹⁹ 信号 (**P* = 0.007)。(d, e) 用罗丹明标记的 $\alpha_i\beta_3$ 靶向 PFC 纳米粒子对分别经 PBS 和 HDM 处理过的大鼠的大气管冰冻切片进行显像。(f) HDM 敏化作用效果相对 PBS 对照组的亚分 析对比,结果显示早期诱导新生血管形成的感应出现在第一周,其统计峰值与两周后的不同 (*P* = 0.05),伴随着新生血管形成数量的下降和三周治疗方法的不同。见参考文献 [184]。

来说,尤其是年轻患者,持续暴露于电离辐射中也是有问题的。用来评估右心室(RV)功能、形态和血液动力学的超声心动描记术经常被用作检测肺高压上升的判断依据,但是这个判断依据并不准确,也不能量化病灶范围或程度。随着MRI线圈和成像技术的进步,3T下同步的¹⁹F/¹H MR分子成像技术为跟踪基于炎症的典型纤维化疾病提供了可能,从而使新的、针对个人优化治疗的方案成为可能。

9 结论

这篇对¹⁹F MRI的综述介绍了出现在20世纪70年代的 概念如何在2015年具有了临床相关性。MR设备、线圈和 脉冲序列的改进已经开始克服多年来阻止临床应用的基 本问题。无论是细胞、靶向分子成像还是氧分压检测等 其他应用[185–190], PFC 都走在MR研究的前沿。其大 量的氟含量和生物惰性特性使得¹⁹F成像成为可能,从而 进一步补充和扩展了¹H MRI。尽管还有许多工作需要做, 但突破性的应用似乎已经不远了。一旦成功,这些特殊 的核磁成像技术应用的大门将被打开。现在挡在技术和 临床应用间的唯一障碍就是贯彻到底的意志力。

致谢

该研究得到国立卫生研究院基金全部或部分支持 (Gregory M. Lanza的CA154737, CA199092, HL122471, HL112518, HL113392和HHSN26820140042C; Samuel A. Wickline的AR067491, DK102691和HL073646)。笔者感 谢Barnes-Jewish研究基金会提供的进一步支持。笔者感 谢王可铮博士帮助翻译论文,并感谢陈俊杰博士帮助校 译中文稿。

Compliance with ethics guidelines

Anne H. Schmieder, Shelton D. Caruthers, Jochen Keupp, Samuel A. Wickline, and Gregory M. Lanza declare that they have no conflict of interest or financial conflicts to disclose.

References

- G. N. Holland, P. A. Bottomley, W. S. Hinshaw. ¹⁹F magnetic resonance imaging. J. Magn. Reson., 1977, 28(1): 133–136
- M. Shimizu, et al. Tumor imaging with anti-CEA antibody labeled ¹⁹F emulsion. *Magn. Reson. Med.*, 1987, 5(3): 290–295
- 3. L. J. Busse, R. G. Pratt, S. R. Thomas. Deconvolution of chemical shift

spectra in two- or three-dimensional [¹⁹F] MR imaging. J. Comput. Assist. Tomogr., 1988, 12(5): 824–835

- P. A. Bottomley. Human in vivo NMR spectroscopy in diagnostic medicine: Clinical tool or research probe? *Radiology*, 1989, 170(1): 1–15
- R. P. Mason, P. P. Antich, E. E. Babcock, J. L. Gerberich, R. L. Nunnally. Perfluorocarbon imaging *in vivo*: A ¹⁹F MRI study in tumor-bearing mice. *Magn. Reson. Imaging*, 1989, 7(5): 475–485
- H. K. Lee, O. Nalcioglu, R. B. Buxton. Correction of chemical-shift artifacts in ¹⁹F imaging of PFOB: A robust signed magnitude method. *Magn. Reson. Med.*, 1992, 23(2): 254–263
- K. L. Meyer, M. J. Carvlin, B. Mukherji, H. A. Sloviter, P. M. Joseph. Fluorinated blood substitute retention in the rat measured by fluorine-19 magnetic resonance imaging. *Invest. Radiol.*, 1992, 27(8): 620–627
- P. Bachert. Pharmacokinetics using fluorine NMR in vivo. Prog. Nucl. Mag. Res. Sp., 1998, 33(1): 1–56
- D. G. Reid, P. S. Murphy. Fluorine magnetic resonance *in vivo*: A powerful tool in the study of drug distribution and metabolism. *Drug Discov. Today*, 2008, 13(11–12): 473–480
- W. Wolf, C. A. Presant, V. Waluch. ¹⁹F-MRS studies of fluorinated drugs in humans. *Adv. Drug Deliv. Rev.*, 2000, 41(1): 55–74
- M. M. Kaneda, S. Caruthers, G. M. Lanza, S. A. Wickline. Perfluorocarbon nanoemulsions for quantitative molecular imaging and targeted therapeutics. *Ann. Biomed. Eng.*, 2009, 37(10): 1922–1933
- R. J. Kaufman. Clinical development of perfluorocarbon-based emulsions as red cell substitutes. In: J. Sjöblom, ed. *Emulsions and Emulsion Stability*. New York: Marcel Dekker, Inc., 1996: 343–368
- M. P. Krafft. Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. *Adv. Drug Deliv. Rev.*, 2001, 47(2–3): 209–228
- D. M. Eckmann, M. A. Swartz, M. R. Glucksberg, N. Gavriely, J. B. Grotberg. Perfluorocarbon induced alterations in pulmonary mechanics. *Artif. Cells Blood Substit. Immobil. Biotechnol.*, 1998, 26(3): 259–271
- D. M. Eckmann, M. A. Swartz, N. Gavriely, M. R. Glucksberg, J. B. Grotberg. Influence of intravenous perfluorocarbon administration on the dynamic behavior of lung surfactant. *Artif. Cells Blood Substit. Immobil. Biotech*nol., 1998, 26(4): 359–366
- H. F. Zhou, H. W. Chan, S. A. Wickline, G. M. Lanza, C. T. Pham. α_yβ₃-targeted nanotherapy suppresses inflammatory arthritis in mice. *FASEB J.*, 2009, 23(9): 2978–2985
- J. C. Hampton. An electron microscope study of the hepatic uptake and excretion of submicroscopic particles injected into the blood stream and into the bile duct. *Acta Anat. (Basel)*, 1958, 32(3): 262–291
- J. W. M. Bulte, A. H. Schmieder, J. Keupp, S. D. Caruthers, S. A. Wickline, G. M. Lanza. MR cholangiography demonstrates unsuspected rapid biliary clearance of nanoparticles in rodents: Implications for clinical translation. *Nanomedicine (Lond.)*, 2014, 10(7): 1385–1388
- L. Juhlin. Excretion of intravenously injected solid particles in bile. Acta Physiol. Scand., 1960, 49(2–3): 224–230
- J. H. Modell, E. J. Newby, B. C. Ruiz. Long-term survival of dogs after breathing oxygenated fluorocarbon liquid. *Fed. Proc.*, 1970, 29(5): 1731–1736
- S. E. Curtis, J. T. Peek, D. R. Kelly. Partial liquid breathing with perflubron improves arterial oxygenation in acute canine lung injury. *J. Appl. Physiol.*, 1993, 75(6): 2696–2702
- S. E. Curtis, S. J. Tilden, W. E. Bradley, S. M. Cain. Effect of continuous rotation on the efficacy of partial liquid (perflubron) breathing in canine acute lung injury. *Adv. Exp. Med. Biol.*, 1994, 361: 449–456
- E. M. Bendel-Stenzel, J. D. Mrozek, D. R. Bing, P. A. Meyers, J. E. Connett, M. C. Mammel. Dynamics of spontaneous breathing during patient-triggered partial liquid ventilation. *Pediatr. Pulmonol.*, 1998, 26(5): 319–325

- A. R. Franz, C. Mack, J. Reichart, F. Pohlandt, H. D. Hummler. Preserved spontaneous breathing improves cardiac output during partial liquid ventilation. *Am. J. Respir. Crit. Care Med.*, 2001, 164(1): 36–42
- U. H. Thome, A. Schulze, R. Schnabel, A. R. Franz, F. Pohlandt, H. D. Hummler. Partial liquid ventilation in severely surfactant-depleted, spontaneously breathing rabbits supported by proportional assist ventilation. *Crit. Care Med.*, 2001, 29(6): 1175–1180
- R. P. Geyer. "Bloodless" rats through the use of artificial blood substitutes. *Fed. Proc.*, 1975, 34(6): 1499–1505
- J. G. Riess, M. Le Blanc. Perfluoro compounds as blood substitutes. Angew. Chem. Int. Ed. Engl., 1978, 17(9): 621–634
- T. Mitsuno, H. Ohyanagi, R. Naito. Clinical studies of a perfluorochemical whole blood substitute (Fluosol-DA): Summary of 186 cases. *Ann. Surg.*, 1982, 195(1): 60–69
- T. M. Chang, M. Farmer, R. P. Geyer, G. Moss. Blood substitutes based on modified hemoglobin and fluorochemicals. *ASAIO Trans.*, 1987, 33(4): 819–823
- F. Hong, K. A. Shastri, G. L. Logue, M. B. Spaulding. Complement activation by artificial blood substitute Fluosol: *In vitro* and *in vivo* studies. *Transfusion*, 1991, 31(7): 642–647
- S. F. Flaim. Pharmacokinetics and side effects of perfluorocarbon-based blood substitutes. *Artif. Cells Blood Substit. Immobil. Biotechnol.*, 1994, 22(4): 1043–1054
- K. C. Lowe. Perfluorinated blood substitutes and artificial oxygen carriers. Blood Rev., 1999, 13(3): 171–184
- C. Jacoby, et al. Probing different perfluorocarbons for *in vivo* inflammation imaging by ¹⁹F MRI: Image reconstruction, biological half-lives and sensitivity. *NMR Biomed.*, 2014, 27(3): 261–271
- C. Jacoby, et al. Visualization of immune cell infiltration in experimental viral myocarditis by ¹⁹F MRI *in vivo*. MAGMA, 2014, 27(1): 101–106
- R. F. Mattrey, F. W. Scheible, B. B. Gosink, G. R. Leopold, D. M. Long, C. B. Higgins. Perfluoroctylbromide: A liver/spleen-specific and tumor-imaging ultrasound contrast material. *Radiology*, 1982, 145(3): 759–762
- R. F. Mattrey, D. M. Long, F. Multer, R. Mitten, C. B. Higgins. Perfluoroctylbromide: A reticuloendothelial-specific and tumor-imaging agent for computed tomography. *Radiology*, 1982, 145(3): 755–758
- R. F. Mattrey, M. P. Andre. Ultrasonic enhancement of myocardial infarction with perfluorocarbon compounds in dogs. *Am. J. Cardiol.*, 1984, 54(1): 206–210
- W. W. Peck, R. F. Mattrey, R. A. Slutsky, C. B. Higgins. Perfluoroctylbromide: Acute hemodynamic effects, in pigs, of intravenous administration compared with the standard ionic contrast media. *Invest. Radiol.*, 1984, 19(2): 129–132
- R. F. Mattrey, et al. Perfluorochemicals as gastrointestinal contrast agents for MR imaging: Preliminary studies in rats and humans. *AJR Am. J. Roentgenol.*, 1987, 148(6): 1259–1263
- D. C. Long, D. M. Long, J. Riess, R. Follana, A. Burgan, R. F. Mattrey. Preparation and application of highly concentrated perfluoroctylbromide fluorocarbon emulsions. *Biomater. Artif. Cells Artif. Organs*, 1988, 16(1–3): 441–442
- R. F. Mattrey. Perfluorooctylbromide: A new contrast agent for CT, sonography, and MR imaging. AJR Am. J. Roentgenol., 1989, 152(2): 247–252
- R. F. Mattrey, A. A. Nemcek Jr., R. Shelton, M. P. André, R. M. Mitten, T. Peterson. *In vivo* estimation of perfluorooctylbromide concentration in tissues. *Invest. Radiol.*, 1990, 25(8): 915–921
- R. F. Mattrey, M. A. Trambert, J. J. Brown, J. N. Bruneton, S. W. Young, G. L. Schooley. Results of the phase III trials with Imagent GI as an oral magnetic resonance contrast agent. *Invest. Radiol.*, 1991, 26(Suppl 1): S65–S66, discus-

sion S71

- R. F. Mattrey, D. J. Schumacher, H. T. Tran, Q. Guo, R. B. Buxton. The use of Imagent[®] BP in diagnostic imaging research and ¹⁹F magnetic resonance for PO₂ measurements. *Biomater. Artif. Cells Immobilization Biotechnol.*, 1992, 20(2–4): 917–920
- G. M. Lanza, et al. A novel site-targeted ultrasonic contrast agent with broad biomedical application. *Circulation*, 1996, 94(12): 3334–3340
- G. M. Lanza, et al. High-frequency ultrasonic detection of thrombi with a targeted contrast system. Ultrasound Med. Biol., 1997, 23(6): 863–870
- G. M. Lanza, et al. *In vitro* characterization of a novel, tissue-targeted ultrasonic contrast system with acoustic microscopy. *J. Acoust. Soc. Am.*, 1998, 104(6): 3665–3672
- G. M. Lanza, et al. Enhanced detection of thrombi with a novel fibrin-targeted magnetic resonance imaging agent. *Acad. Radiol.*, 1998, 5(Suppl 1): S173–S176, discussion S183–S184
- S. A. Anderson, et al. Magnetic resonance contrast enhancement of neovasculature with α_vβ₃-targeted nanoparticles. *Magn. Reson. Med.*, 2000, 44(3): 433–439
- S. Flacke, et al. Novel MRI contrast agent for molecular imaging of fibrin: Implications for detecting vulnerable plaques. *Circulation*, 2001, 104(11): 1280–1285
- G. M. Lanza, et al. Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: Implications for rational therapy of restenosis. *Circulation*, 2002, 106(22): 2842–2847
- 52. P. M. Winter, et al. Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel $\alpha_{v}\beta_{3}$ -targeted nanoparticle and 1.5 tesla magnetic resonance imaging. *Cancer Res.*, 2003, 63(18): 5838–5843
- 53. P. M. Winter, et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with $\alpha_v \beta_3$ -integrin-targeted nanoparticles. *Circulation*, 2003, 108(18): 2270–2274
- A. M. Morawski, et al. Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. *Magn. Reson. Med.*, 2004, 51(3): 480– 486
- A. M. Morawski, et al. Quantitative "magnetic resonance immunohistochemistry" with ligand-targeted ¹⁹F nanoparticles. *Magn. Reson. Med.*, 2004, 52(6): 1255–1262
- A. H. Schmieder, et al. Molecular MR imaging of melanoma angiogenesis with α_vβ₃-targeted paramagnetic nanoparticles. *Magn. Reson. Med.*, 2005, 53(3): 621–627
- P. M. Winter, et al. Molecular imaging of human thrombus with computed tomography. *Acad. Radiol.*, 2005, 12(5 Suppl 1): S9–S13
- T. Cyrus, et al. MR three-dimensional molecular imaging of intramural biomarkers with targeted nanoparticles. J. Cardiovasc. Magn. Reson., 2006, 8(3): 535–541
- P. M. Winter, et al. Endothelial α_vβ₃ integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. *Arterioscler. Thromb. Vasc. Biol.*, 2006, 26(9): 2103–2109
- G. Hu, et al. Imaging of Vx-2 rabbit tumors with α_yβ₃-integrin-targeted ¹¹¹In nanoparticles. *Int. J. Cancer*, 2007, 120(9): 1951–1957
- 61. J. N. Marsh, et al. Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis. *Nanomedicine (Lond.)*, 2007, 2(4): 533–543
- A. M. Neubauer, et al. Fluorine cardiovascular magnetic resonance angiography *in vivo* at 1.5 T with perfluorocarbon nanoparticle contrast agents. *J. Cardiovasc. Magn. Reson.*, 2007, 9(3): 565–573
- K. C. Partlow, et al. ¹⁹F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. *FASEB J.*, 2007, 21(8): 1647–1654

- T. Cyrus, et al. Intramural delivery of rapamycin with a_vβ₃-targeted paramagnetic nanoparticles inhibits stenosis after balloon injury. *Arterioscler*. *Thromb. Vasc. Biol.*, 2008, 28(5): 820–826
- M. Lijowski, et al. High sensitivity: High-resolution SPECT-CT/MR molecular imaging of angiogenesis in the Vx2 model. *Invest. Radiol.*, 2009, 44(1): 15–22
- K. C. Partlow, G. M. Lanza, S. A. Wickline. Exploiting lipid raft transport with membrane targeted nanoparticles: A strategy for cytosolic drug delivery. *Biomaterials*, 2008, 29(23): 3367–3375
- J. Ruiz-Cabello, et al. *In vivo* "hot spot" MR imaging of neural stem cells using fluorinated nanoparticles. *Magn. Reson. Med.*, 2008, 60(6): 1506–1511
- 68. A. H. Schmieder, et al. Three-dimensional MR mapping of angiogenesis with $\alpha_{3}\beta_{1}(\alpha_{v}\beta_{3})$ -targeted theranostic nanoparticles in the MDA-MB-435 xenograft mouse model. *FASEB J.*, 2008, 22(12): 4179–4189
- N. R. Soman, G. M. Lanza, J. M. Heuser, P. H. Schlesinger, S. A. Wickline. Synthesis and characterization of stable fluorocarbon nanostructures as drug delivery vehicles for cytolytic peptides. *Nano Lett.*, 2008, 8(4): 1131– 1136
- E. A. Waters, J. Chen, J. S. Allen, H. Zhang, G. M. Lanza, S. A. Wickline. Detection and quantification of angiogenesis in experimental valve disease with integrin-targeted nanoparticles and 19-fluorine MRI/MRS. *J. Cardio*vasc. Magn. Reson., 2008, 10: 43
- P. M. Winter, S. D. Caruthers, H. Zhang, T. A. Williams, S. A. Wickline, G. M. Lanza. Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. *JACC Cardiovasc. Imaging*, 2008, 1(5): 624–634
- P. M. Winter, et al. Minute dosages of α_vβ₃-targeted fumagillin nanoparticles impair Vx-2 tumor angiogenesis and development in rabbits. *FASEB J.*, 2008, 22(8): 2758–2767
- 73. J. Keupp, S. D. Caruthers, J. Rahmer, T. A. Williams, S. A. Wickline, G. M. Lanza. Fluorine-19 MR molecular imaging of angiogenesis on Vx-2 tumors in rabbits using α_vβ₃-targeted nanoparticles. In: *Proceedings of International Society* for Magnetic Resonance in Medicine (ISMRM) 17th Annual Scientific Meeting and Exhibition. Honolulu, HI, USA, 2009: 223
- N. R. Soman, et al. Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. *J. Clin. Invest.*, 2009, 119(9): 2830–2842
- R. Southworth, et al. Renal vascular inflammation induced by Western diet in ApoE-null mice quantified by ¹⁹F NMR of VCAM-1 targeted nanobeacons. *Nanomedicine (Lond.)*, 2009, 5(3): 359–367
- K. Cai, et al. MR molecular imaging of aortic angiogenesis. JACC Cardiovasc. Imaging, 2010, 3(8): 824–832
- A. Kassner, et al. Assessment of tumor angiogenesis: Dynamic contrast-enhanced MRI with paramagnetic nanoparticles compared with Gd-DTPA in a rabbit Vx-2 tumor model. *Contrast Media Mol. Imaging*, 2010, 5(3): 155–161
- G. M. Lanza, et al. Theragnostics for tumor and plaque angiogenesis with perfluorocarbon nanoemulsions. *Angiogenesis*, 2010, 13(2): 189–202
- J. N. Marsh, et al. A fibrin-specific thrombolytic nanomedicine approach to acute ischemic stroke. *Nanomedicine (Lond.)*, 2011, 6(4): 605–615
- D. G. Thomas, et al. Physicochemical signatures of nanoparticle-dependent complement activation. *Comput. Sci. Discov.*, 2014, 7(1): 015003
- C. T. Pham, et al. Variable antibody-dependent activation of complement by functionalized phospholipid nanoparticle surfaces. *J. Biol. Chem.*, 2011, 286(1): 123–130
- K. Wang, et al. Synergy between surface and core entrapped metals in a mixed manganese-gadolinium nanocolloid affords safer MR imaging of sparse biomarkers. *Nanomedicine (Lond.)*, 2015, 11(3): 601–609
- 83. D. A. Kedziorek, et al. Gene expression profiling reveals early cellular

responses to intracellular magnetic labeling with superparamagnetic iron oxide nanoparticles. *Magn. Reson. Med.*, 2010, 63(4): 1031–1043

- R. D. Engberink, et al. Magnetic resonance imaging of monocytes labeled with ultrasmall superparamagnetic particles of iron oxide using magnetoelectroporation in an animal model of multiple sclerosis. *Mol. Imaging*, 2010, 9(5): 268–277
- M. Stuber, et al. Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). *Magn. Reson. Med.*, 2007, 58(5): 1072–1077
- J. W. Bulte, D. L. Kraitchman. Monitoring cell therapy using iron oxide MR contrast agents. *Curr. Pharm. Biotechnol.*, 2004, 5(6): 567–584
- J. A. Frank, et al. Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. *Acad. Radiol.*, 2002, 9(Suppl 2): S484–S487
- J. W. Bulte, J. A. Frank. Imaging macrophage activity in the brain by using ultrasmall particles of iron oxide. *AJNR Am. J. Neuroradiol.*, 2000, 21(9): 1767–1768
- J. W. Bulte, R. A. Brooks, B. M. Moskowitz, L. H. Bryant Jr., J. A. Frank. *T*₁ and *T*₂ relaxometry of monocrystalline iron oxide nanoparticles (MI-ON-46L): Theory and experiment. *Acad. Radiol.*, 1998, 5(Suppl 1): S137– S140, discussion S145–S146
- J. W. Bulte, P. G. Laughlin, E. K. Jordan, V. A. Tran, J. Vymazal, J. A. Frank. Tagging of T cells with superparamagnetic iron oxide: Uptake kinetics and relaxometry. *Acad. Radiol.*, 1996, 3(Suppl 2): S301–S303
- E. T. Ahrens, R. Flores, H. Xu, P. A. Morel. *In vivo* imaging platform for tracking immunotherapeutic cells. *Nat. Biotechnol.*, 2005, 23(8): 983–987
- M. Srinivas, P. A. Morel, L. A. Ernst, D. H. Laidlaw, E. T. Ahrens. Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. *Magn. Reson. Med.*, 2007, 58(4): 725–734
- J. M. Janjic, E. T. Ahrens. Fluorine-containing nanoemulsions for MRI cell tracking. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2009, 1(5): 492–501
- B. M. Helfer, et al. Functional assessment of human dendritic cells labeled for *in vivo* ¹⁹F magnetic resonance imaging cell tracking. *Cytotherapy*, 2010, 12(2): 238–250
- F. Bonetto, et al. A novel ¹⁹F agent for detection and quantification of human dendritic cells using magnetic resonance imaging. *Int. J. Cancer*, 2011, 129(2): 365–373
- T. K. Hitchens, Q. Ye, D. F. Eytan, J. M. Janjic, E. T. Ahrens, C. Ho. ¹⁹F MRI detection of acute allograft rejection with *in vivo* perfluorocarbon labeling of immune cells. *Magn. Reson. Med.*, 2011, 65(4): 1144–1153
- A. Balducci, B. M. Helfer, E. T. Ahrens, C. F. O'Hanlon 3rd, A. K. Wesa. Visualizing arthritic inflammation and therapeutic response by fluorine-19 magnetic resonance imaging (¹⁹F MRI). J. Inflamm. (Lond.), 2012, 9(1): 24
- E. T. Ahrens, B. M. Helfer, C. F. O'Hanlon, C. Schirda. Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI. *Magn. Reson. Med.*, 2014, 72(6): 1696–1701
- E. T. Ahrens, J. W. Bulte. Tracking immune cells in vivo using magnetic resonance imaging. Nat. Rev. Immunol., 2013, 13(10): 755–763
- 100. J. Zhong, P. H. Mills, T. K. Hitchens, E. T. Ahrens. Accelerated fluorine-19 MRI cell tracking using compressed sensing. *Magn. Reson. Med.*, 2013, 69(6): 1683–1690
- 101. T. K. Hitchens, L. Liu, L. M. Foley, V. Simplaceanu, E. T. Ahrens, C. Ho. Combining perfluorocarbon and superparamagnetic iron-oxide cell labeling for improved and expanded applications of cellular MRI. *Magn. Reson. Med.*, 2015, 73(1): 367–375
- 102. J. M. Janjic, M. Srinivas, D. K. K. Kadayakkara, E. T. Ahrens. Self-delivering nanoemulsions for dual fluorine-19 MRI and fluorescence detection. J. Am.

Chem. Soc., 2008, 130(9): 2832-2841

- 103. H. P. Schlemmer, et al. Alterations of intratumoral pharmacokinetics of 5-fluorouracil in head and neck carcinoma during simultaneous radiochemotherapy. *Cancer Res.*, 1999, 59(10): 2363–2369
- 104. R. Martino, V. Gilard, F. Desmoulin, M. Malet-Martino. Fluorine-19 or phosphorus-31 NMR spectroscopy: A suitable analytical technique for quantitative *in vitro* metabolic studies of fluorinated or phosphorylated drugs. *J. Pharm. Biomed. Anal.*, 2005, 38(5): 871–891
- 105. A. M. Neubauer, et al. Gadolinium-modulated ¹⁹F signals from perfluorocarbon nanoparticles as a new strategy for molecular imaging. *Magn. Reson. Med.*, 2008, 60(5): 1066–1072
- 106. P. Harvey, I. Kuprov, D. Parker. Lanthanide complexes as paramagnetic probes for ¹⁹F magnetic resonance. *Eur. J. Inorg. Chem.*, 2012, 2012(12): 2015– 2022
- 107. A. de Vries, et al. Relaxometric studies of gadolinium-functionalized perfluorocarbon nanoparticles for MR imaging. *Contrast Media Mol. Imaging*, 2014, 9(1): 83–91
- 108. M. Meissner, M. Reisert, T. Hugger, J. Hennig, D. von Elverfeldt, J. Leupold. Revealing signal from noisy ¹⁹F MR images by chemical shift artifact correction. *Magn. Reson. Med.*, 2015, 73(6): 2225–2233
- 109. F. Schmid, C. Höltke, D. Parker, C. Faber. Boosting ¹⁹F MRI-SNR efficient detection of paramagnetic contrast agents using ultrafast sequences. *Magn. Reson. Med.*, 2013, 69(4): 1056–1062
- 110. M. J. Goette, G. M. Lanza, S. D. Caruthers, S. A. Wickline. Improved quantitative ¹⁹F MR molecular imaging with flip angle calibration and B₁-mapping compensation. *J. Magn. Reson. Imaging*, 2015, 42(2): 488–494
- 111. M. J. Goette, J. Keupp, J. Rahmer, G. M. Lanza, S. A. Wickline, S. D. Caruthers. Balanced UTE-SSFP for ¹⁹F MR imaging of complex spectra. *Magn. Reson. Med.*, 2015, 74(2): 537–543
- 112. J. Rahmer, et al. ¹⁹F/¹H simultaneous 3D radial imaging of atherosclerotic rabbits using self-navigated respiratory motion compensation. In: Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM) 17th Annual Scientific Meeting and Exhibition. Honolulu, HI, USA, 2009: 4611
- 113. J. Rahmer, et al. Dual resolution simultaneous ¹⁹F/¹H in vivo imaging of targeted nanoparticles. In: Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM) 17th Annual Scientific Meeting and Exhibition. Honolulu, HI, USA, 2009: 612
- 114. J. Keupp, et al. Simultaneous dual-nuclei imaging for motion corrected detection and quantification of ¹⁹F imaging agents. *Magn. Reson. Med.*, 2011, 66(4): 1116–1122
- 115. Y. Otake, Y. Soutome, K. Hirata, H. Ochi, Y. Bito. Double-tuned radiofrequency coil for ¹⁹F and ¹H imaging. *Magn. Reson. Med. Sci.*, 2014, 13(3): 199–205
- 116. Y. Ji, et al. Eight-channel transceiver RF coil array tailored for ¹H/¹⁹F MR of the human knee and fluorinated drugs at 7.0 T. NMR Biomed., 2015, 28(6): 726–737
- 117. L. Hu, et al. A generalized strategy for designing ¹⁹F/¹H dual-frequency MRI coil for small animal imaging at 4.7 tesla. J. Magn. Reson. Imaging, 2011, 34(1): 245–252
- 118. F. D. Hockett, et al. Simultaneous dual frequency ¹H and ¹⁹F open coil imaging of arthritic rabbit knee at 3 T. *IEEE Trans. Med. Imaging*, 2011, 30(1): 22–27
- 119. L. T. Muftuler, G. Gulsen, K. D. Sezen, O. Nalcioglu. Automatic tuned MRI RF coil for multinuclear imaging of small animals at 3 T. J. Magn. Reson., 2002, 155(1): 39–44
- 120. P. Mazurkewitz, C. Leussler, J. Keupp, T. Schaeffter. A double-resonant ¹⁹F/¹H transmit/receive solenoid coil for MRI. In: *Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM)* 14th Scientific Meeting

and Exhibition. Seattle, WA, USA, 2006: 2596

- 121. D. Ballon, M. C. Graham, S. Miodownik, J. A. Koutcher. A 64 MHz half-birdcage resonator for clinical imaging. J. Magn. Reson., 1990, 90(1): 131–140
- 122. J. Jin, R. L. Magin, G. Shen, T. Perkins. A simple method to incorporate the effects of an RF shield into RF resonator analysis for MRI applications. *IEEE Trans. Biomed. Eng.*, 1995, 42(8): 840–843
- 123. M. J. Goette, G. M. Lanza, S. A. Wickline, S. D. Caruthers. Quantitative molecular imaging of fluorinated agents: ¹⁹F flip angle calibration using ¹H power settings. In: *Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM) 20th Annual Scientific Meeting and Exhibition*. Melbourne, Victoria, Australia, 2012: 1655
- 124. A. Mastropietro, et al. Optimization of rapid acquisition with relaxation enhancement (RARE) pulse sequence parameters for ¹⁹F-MRI studies. *J. Magn. Reson. Imaging*, 2014, 40(1): 162–170
- 125. S. B. Reeder, D. A. Herzka, E. R. McVeigh. Signal-to-noise ratio behavior of steady-state free precession. *Magn. Reson. Med.*, 2004, 52(1): 123–130
- 126. J. Yu, et al. Optimization of scan parameters in pulmonary partial pressure oxygen measurement by hyperpolarized ³He MRI. *Magn. Reson. Med.*, 2008, 59(1): 124–131
- 127. J. Keupp, P. C. Mazurkewitz, I. Gräßlin, T. Schaeffter. Simultaneous ¹⁹F and ¹H imaging on a clinical 3 T MR scanner. In: *Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM) 14th Scientific Meeting and Exhibition*. Seattle, WA, USA, 2006: 102
- 128. J. Keupp, S. A. Wickline, G. M. Lanza, S. D. Caruthers. Hadamard-type pulse-phase encoding for imaging of multi-resonant fluorine-19 nanoparticles in targeted molecular MRI. In: *Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM) 18th Annual Scientific Meeting and Exhibition.* Stockholm, Sweden, 2010: 982
- 129. R. Lamerichs, et al. In vivo 3D ¹⁹F fast spectroscopic imaging (F-uTSI) of angiogenesis on Vx-2 tumors in rabbits using targeted perfluorocarbon emulsions. In: Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM) 18th Annual Scientific Meeting and Exhibition. Stockholm, Sweden, 2010: 457
- 130. J. Rahmer, P. Börnert, J. Groen, C. Bos. Three-dimensional radial ultrashort echo-time imaging with T₂ adapted sampling. *Magn. Reson. Med.*, 2006, 55(5): 1075–1082
- 131. K. Scheffler, S. Lehnhardt. Principles and applications of balanced SSFP techniques. *Eur. Radiol.*, 2003, 13(11): 2409–2418
- 132. E. J. Ribot, J. M. Gaudet, Y. Chen, K. M. Gilbert, P. J. Foster. In vivo MR detection of fluorine-labeled human MSC using the bSSFP sequence. Int. J. Nanomedicine, 2014, 9(1): 1731–1739
- 133. H. E. Longmaid 3rd, et al. In vivo ¹⁹F NMR imaging of liver, tumor, and abscess in rats: Preliminary results. Invest. Radiol., 1985, 20(2): 141–145
- 134. R. F. Mattrey, et al. Specific enhancement of intra-abdominal abscesses with perfluoroctylbromide for CT imaging. *Invest. Radiol.*, 1984, 19(5): 438–446
- 135. D. J. Sartoris, et al. Perfluoroctylbromide as a contrast agent for computed tomographic imaging of septic and aseptic arthritis. *Invest. Radiol.*, 1986, 21(1): 49–55
- 136. A. V. Ratner, et al. Detection of tumors with ¹⁹F magnetic resonance imaging. *Invest. Radiol.*, 1988, 23(5): 361–364
- 137. A. V. Ratner, H. H. Muller, B. Bradley-Simpson, D. Hirst, W. Pitts, S. W. Young. Detection of acute radiation damage to the spleen in mice by using fluorine-19 MR imaging. *AJR Am. J. Roentgenol.*, 1988, 151(3): 477–480
- 138. B. P. Barnett, et al. Use of perfluorocarbon nanoparticles for non-invasive multimodal cell tracking of human pancreatic islets. *Contrast Media Mol. Imaging*, 2011, 6(4): 251–259
- 139. U. Flögel, et al. In vivo monitoring of inflammation after cardiac and cere-

bral ischemia by fluorine magnetic resonance imaging. *Circulation*, 2008, 118(2): 140–148

- 140. B. Ebner, et al. Early assessment of pulmonary inflammation by ¹⁹F MRI in vivo. Circ. Cardiovasc. Imaging, 2010, 3(2): 202–210
- 141. K. Vasudeva, et al. Imaging neuroinflammation *in vivo* in a neuropathic pain rat model with near-infrared fluorescence and ¹⁹F magnetic resonance. *PLoS ONE*, 2014, 9(2): e90589
- 142. X. Yu, et al. High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. *Magn. Reson. Med.*, 2000, 44(6): 867–872
- 143. J. Myerson, L. He, G. Lanza, D. Tollefsen, S. Wickline. Thrombin-inhibiting perfluorocarbon nanoparticles provide a novel strategy for the treatment and magnetic resonance imaging of acute thrombosis. J. Thromb. Haemost., 2011, 9(7): 1292–1300
- 144. A. A. Gilad, et al. Artificial reporter gene providing MRI contrast based on proton exchange. Nat. Biotechnol., 2007, 25(2): 217–219
- 145. P. M. Winter, et al. Molecular imaging of angiogenic therapy in peripheral vascular disease with $\alpha_v \beta_3$ -integrin-targeted nanoparticles. *Magn. Reson. Med.*, 2010, 64(2): 369–376
- 146. E. Vinogradov, A. D. Sherry, R. E. Lenkinski. CEST: From basic principles to applications, challenges and opportunities. J. Magn. Reson., 2013, 229: 155–172
- 147. E. Vinogradov, T. C. Soesbe, J. A. Balschi, A. D. Sherry, R. E. Lenkinski. pCEST: Positive contrast using Chemical Exchange Saturation Transfer. J. Magn. Reson., 2012, 215: 64–73
- 148. S. J. Ratnakar, S. Viswanathan, Z. Kovacs, A. K. Jindal, K. N. Green, A. D. Sherry. Europium(III) DOTA-tetraamide complexes as redox-active MRI sensors. J. Am. Chem. Soc., 2012, 134(13): 5798–5800
- 149. C. Khemtong, et al. Off-resonance saturation MRI of superparamagnetic nanoprobes: Theoretical models and experimental validations. J. Magn. Reson., 2011, 209(1): 53–60
- 150. D. Coman, G. E. Kiefer, D. L. Rothman, A. D. Sherry, F. Hyder. A lanthanide complex with dual biosensing properties: CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts) with europium DOTA-tetraglycinate. *NMR Biomed.*, 2011, 24(10): 1216–1225
- 151. S. Viswanathan, S. J. Ratnakar, K. N. Green, Z. Kovacs, L. M. De León-Rodríguez, A. D. Sherry. Multi-frequency PARACEST agents based on europium(III)-DOTA-tetraamide ligands. *Angew. Chem. Int. Ed. Engl.*, 2009, 48(49): 9330–9333
- 152. C. Khemtong, et al. *In vivo* off-resonance saturation magnetic resonance imaging of α_xβ₃-targeted superparamagnetic nanoparticles. *Cancer Res.*, 2009, 69(4): 1651–1658
- 153. J. M. Zhao, et al. Size-induced enhancement of chemical exchange saturation transfer (CEST) contrast in liposomes. J. Am. Chem. Soc., 2008, 130(15): 5178–5184
- 154. A. Pasha, G. Tircsó, E. T. Benyó, E. Brücher, A. D. Sherry. Synthesis and characterization of DOTA-(amide)₄ derivatives: Equilibrium and kinetic behavior of their lanthanide(III) complexes. *Eur. J. Inorg. Chem.*, 2007, 2007(27): 4340–4349
- 155. E. Vinogradov, S. Zhang, A. Lubag, J. A. Balschi, A. D. Sherry, R. E. Lenkinski. On-resonance low B₁ pulses for imaging of the effects of PARACEST agents. J. Magn. Reson., 2005, 176(1): 54–63
- 156. L. Di Bari, G. Pescitelli, A. D. Sherry, M. Woods. Structural and chiroptical properties of the two coordination isomers of YbDOTA-type complexes. *Inorg. Chem.*, 2005, 44(23): 8391–8398
- 157. M. Woods, et al. Synthesis, relaxometric and photophysical properties of a new pH-responsive MRI contrast agent: The effect of other ligating groups on dissociation of a *p*-nitrophenolic pendant arm. *J. Am. Chem. Soc.*, 2004,

126(30): 9248-9256

- 158. S. Zhang, M. Merritt, D. E. Woessner, R. E. Lenkinski, A. D. Sherry. PARACEST agents: Modulating MRI contrast via water proton exchange. *Acc. Chem. Res.*, 2003, 36(10): 783–790
- 159. S. Zhang, K. Wu, A. D. Sherry. Gd³⁺ complexes with slowly exchanging bound-water molecules may offer advantages in the design of responsive MR agents. *Invest. Radiol.*, 2001, 36(2): 82–86
- 160. M. Vandsburger, et al. Cardio-chemical exchange saturation transfer magnetic resonance imaging reveals molecular signatures of endogenous fibrosis and exogenous contrast media. *Circ. Cardiovasc. Imaging*, 2015, 8(1): e002180
- 161. G. Rancan, D. Delli Castelli, S. Aime. MRI CEST at 1 T with large μ_{eff} Ln³⁺ complexes Tm³⁺-HPDO3A: An efficient MRI pH reporter. *Magn. Reson. Med.*, 2015 (in press)
- 162. D. L. Longo, P. Z. Sun, L. Consolino, F. C. Michelotti, F. Uggeri, S. Aime. A general MRI-CEST ratiometric approach for pH imaging: Demonstration of *in vivo* pH mapping with iobitridol. *J. Am. Chem. Soc.*, 2014, 136(41): 14333– 14336
- 163. E. Terreno, et al. Gadolinium-doped LipoCEST agents: A potential novel class of dual ¹H-MRI probes. *Chem. Commun. (Camb.)*, 2011, 47(16): 4667– 4669
- E. Terreno, et al. Methods for an improved detection of the MRI-CEST effect. Contrast Media Mol. Imaging, 2009, 4(5): 237–247
- 165. E. Terreno, D. Delli Castelli, E. Violante, H. M. Sanders, N. A. Sommerdijk, S. Aime. Osmotically shrunken LIPOCEST agents: An innovative class of magnetic resonance imaging contrast media based on chemical exchange saturation transfer. *Chemistry*, 2009, 15(6): 1440–1448
- 166. E. Terreno, et al. First ex-vivo MRI co-localization of two LIPOCEST agents. Contrast Media Mol. Imaging, 2008, 3(1): 38–43
- 167. E. Terreno, et al. Highly shifted LIPOCEST agents based on the encapsulation of neutral polynuclear paramagnetic shift reagents. *Chem. Commun.* (*Camb.*), 2008(5): 600–602
- 168. S. Aime, D. Delli Castelli, E. Terreno. Highly sensitive MRI chemical exchange saturation transfer agents using liposomes. *Angew. Chem. Int. Ed. Engl.*, 2005, 44(34): 5513–5515
- 169. S. Aime, C. Carrera, D. Delli Castelli, S. Geninatti Crich, E. Terreno. Tunable imaging of cells labeled with MRI-PARACEST agents. *Angew. Chem. Int. Ed. Engl.*, 2005, 44(12): 1813–1815
- 170. S. Aime, D. Delli Castelli, F. Fedeli, E. Terreno. A paramagnetic MRI-CEST agent responsive to lactate concentration. J. Am. Chem. Soc., 2002, 124(32): 9364–9365
- 171. X. Song, et al. Multi-echo length and offset VARied saturation (MeLOVARS) method for improved CEST imaging. *Magn. Reson. Med.*, 2015, 73(2): 488– 496
- 172. A. Bar-Shir, N. N. Yadav, A. A. Gilad, P. C. van Zijl, M. T. McMahon, J. W. Bulte. Single ¹⁹F probe for simultaneous detection of multiple metal ions using miCEST MRI. *J. Am. Chem. Soc.*, 2015, 137(1): 78–81
- 173. K. W. Chan, G. Liu, P. C. van Zijl, J. W. Bulte, M. T. McMahon. Magnetization transfer contrast MRI for non-invasive assessment of innate and adaptive immune responses against alginate-encapsulated cells. *Biomaterials*, 2014, 35(27): 7811–7818
- 174. X. Song, et al. CEST phase mapping using a length and offset varied saturation (LOVARS) scheme. Magn. Reson. Med., 2012, 68(4): 1074–1086
- 175. G. Liu, et al. Monitoring enzyme activity using a diamagnetic chemical exchange saturation transfer magnetic resonance imaging contrast agent. J. Am. Chem. Soc., 2011, 133(41): 16326–16329
- 176. M. T. McMahon, A. A. Gilad, M. A. DeLiso, S. M. Cromer Berman, J. W. Bulte, P. C. van Zijl. New "multicolor" polypeptide diamagnetic chemical

exchange saturation transfer (DIACEST) contrast agents for MRI. Magn. Reson. Med., 2008, 60(4): 803–812

- 177. M. T. McMahon, A. A. Gilad, J. Zhou, P. Z. Sun, J. W. Bulte, P. C. van Zijl. Quantifying exchange rates in chemical exchange saturation transfer agents using the saturation time and saturation power dependencies of the magnetization transfer effect on the magnetic resonance imaging signal (QUEST and QUESP): Ph calibration for poly-L-lysine and a starburst dendrimer. *Magn. Reson. Med.*, 2006, 55(4): 836–847
- 178. K. Snoussi, J. W. Bulte, M. Guéron, P. C. van Zijl. Sensitive CEST agents based on nucleic acid imino proton exchange: Detection of poly(rU) and of a dendrimer-poly(rU) model for nucleic acid delivery and pharmacology. *Magn. Reson. Med.*, 2003, 49(6): 998–1005
- 179. C. Giraudeau, et al. A new paradigm for high-sensitivity ¹⁹F magnetic resonance imaging of perfluorooctylbromide. *Magn. Reson. Med.*, 2010, 63(4): 1119–1124
- 180. O. Diou, et al. RGD decoration of PEGylated polyester nanocapsules of perfluorooctyl bromide for tumor imaging: Influence of pre or post-functionalization on capsule morphology. *Eur. J. Pharm. Biopharm.*, 2014, 87(1): 170–177
- 181. O. Diou, et al. Long-circulating perfluorooctyl bromide nanocapsules for tumor imaging by ¹⁹FMRI. *Biomaterials*, 2012, 33(22): 5593–5602
- 182. W. Mitzner, W. Lee, D. Georgakopoulos, E. Wagner. Angiogenesis in the mouse lung. Am. J. Pathol., 2000, 157(1): 93–101
- 183. A. H. Schmieder, et al. Characterization of early neovascular response to

acute lung ischemia using simultaneous $^{19}{\rm F}/^{1}{\rm H}$ MR molecular imaging. Angiogenesis, 2014, 17(1): 51–60

- 184. E. M. Wagner, et al. Angiogenesis and airway reactivity in asthmatic Brown Norway rats. Angiogenesis, 2015, 18(1): 1–11
- 185. U. Nöth, P. Gröhn, A. Jork, U. Zimmermann, A. Haase, J. Lutz. ¹⁹F-MRI *in vivo* determination of the partial oxygen pressure in perfluorocarbon-load-ed alginate capsules implanted into the peritoneal cavity and different tissues. *Magn. Reson. Med.*, 1999, 42(6): 1039–1047
- 186. R. P. Mason, F. M. Jeffrey, C. R. Malloy, E. E. Babcock, P. P. Antich. A noninvasive assessment of myocardial oxygen tension: ¹⁹F NMR spectroscopy of sequestered perfluorocarbon emulsion. *Magn. Reson. Med.*, 1992, 27(2): 310–317
- 187. F. Goh, R. Long Jr., N. Simpson, A.Sambanis. Dual perfluorocarbon method to noninvasively monitor dissolved oxygen concentration in tissue engineered constructs *in vitro* and *in vivo*. *Biotechnol. Prog.*, 2011, 27(4): 1115–1125
- 188. F. Goh, A. Sambanis. In vivo noninvasive monitoring of dissolved oxygen concentration within an implanted tissue-engineered pancreatic construct. *Tissue Eng. Part C Methods*, 2011, 17(9): 887–894
- 189. L. Hu, J. Chen, X. Yang, S. D. Caruthers, G. M. Lanza, S. A. Wickline. Rapid quantification of oxygen tension in blood flow with a fluorine nanoparticle reporter and a novel blood flow-enhanced-saturation-recovery sequence. *Magn. Reson. Med.*, 2013, 70(1): 176–183
- 190. L. Lemaire, et al. Perfluorocarbon-loaded lipid nanocapsules as oxygen sensors for tumor tissue pO_2 assessment. *Eur. J. Pharm. Biopharm.*, 2013, 84(3): 479–486