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ABSTRACT This paper collects and synthesizes the technical 
requirements, implementation, and validation methods for 
quasi-steady agent-based simulations of interconnection-
scale models with particular attention to the integration of 
renewable generation and controllable loads. Approaches 
for modeling aggregated controllable loads are presented 
and placed in the same control and economic modeling 
framework as generation resources for interconnection 
planning studies. Model performance is examined with 
system parameters that are typical for an interconnection 
approximately the size of the Western Electricity Coordinating 
Council (WECC) and a control area about 1/100 the size 
of the system. These results are used to demonstrate and 
validate the methods presented.

KEYWORDS interconnection studies, demand response, 
load control, renewable integration, agent-based simulation, 
electricity markets

1 Introduction
Climate change concerns are driving electric utilities to fi nd 
ways to reduce greenhouse gas emissions while continuing 
to meet the demand for reliable electricity. Primary among 
these methods is the adoption of renewable generation as a 
major component in the generation resource portfolio. The 
growth of renewable resources has reached a level in some 
electricity interconnections such that existing frequency 
regulation resources are being called upon to react to devia-
tions more often than in the past [1]. In response, utilities 
are sometimes forced to schedule and dispatch more costly 
reserves and/or curtail less costly renewables. This response 
increases the effective cost of renewables by requiring the 
purchase of additional reserves at prices that are higher than 
the marginal cost of the intermittent resources [2].

An alternative to employing additional reserve and regula-
tion resources is to enable load to respond to frequency devi-
ations in a manner that is similar to generation. This general 

approach was originally proposed more than 30 years ago [3]. 
Simulation studies [4] and demonstrations [5, 6] have shown 
the potential for loads to serve as short-term fast-acting vir-
tual generators and act as a frequency regulation resource 
that can contribute to primary regulation.

Conventional direct load control has focused primarily 
on the use of load as an under-frequency load shedding 
resource. The control models of this type of resource are 
primarily based on the impulse response of loads to large 
deviations in frequency [7]. However, for the purposes of 
frequency regulation, load control design must examine the 
small signal stability of the system [8]. The latter approach 
considers more than just the magnitude of the total installed 
base of controllable load [9, 10]; it also considers the aggregate 
load control gain, closed-loop control feedback effects, and 
any load state diversity impacts arising from resource utiliza-
tion.

The lack of participation by load in organized energy 
markets is an important barrier to demand response tech-
nology [11]. In addition, the cost, capacity, and reliability of 
the communication systems for controllable loads under-
mine the confidence utilities have in using loads as a reli-
able substitute for dispatchable generation [12]. There can 
also be signifi cant uncertainty regarding the amount of load 
that will be available to respond, the duration with which 
it will respond, and the magnitude of the rebound when it 
is released [13]. Finally, changes in the allocation of genera-
tion resources can impact transmission capacity and N–1 
contingency reliability resource selection, and can lead to 
additional operational costs [14].

There is a long history of using load as a resource, begin-
ning with demand-side management (DSM) programs and 
time-of-use (TOU) rates. DSM programs exploited seasonal 
long-term demand elasticity through energy effi ciency mea-
sures in order to defer capacity additions by holding down 
peak loads as load-growth rates waned in industrialized na-
tions. TOU programs were an effective strategy for obtaining 
the sustained price-based control of peak load using diurnal 
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mid-term demand elasticity. Some of 
this capability has been transferred 
to short-term elasticity by using the 
pseudo-storage potential of thermostat 
loads [15]. Peak-time rebates, critical-
peak prices, and real-time price signals 
have been used to more directly reveal 
the short-term elasticity of demand [16].

In the case of real-time price (RTP) de-
mand response systems, price-discovery 
is an important challenge [17] that has 
been addressed through the develop-
ment of so-called “transactive control.” 
In these bi-directional systems, infor-
mation about the available resources 
and their reservation prices※ is collect-
ed from demand resources and includ-
ed in a double-auction market where 
both the supply curve and demand 
curve are used to discover the price at 
which supply will equal demand. This 
mechanism has been used to solve real-
time resource capacity allocation prob-
lems at the utility scale [18] but has yet 
to be carefully studied for regulation 
resource allocation [19].

The main purpose of this paper is to 
review and synthesize design require-
ments, implementation considerations, 
and validation approaches for agent-
based simulations that can assist in the 
design of load control strategies. The 
simulations can then help address the 
renewable integration challenges that 
utilities confront as they try to mitigate 
the greenhouse gas emissions of their 
conventional generation fleets. Such 
simulation environments must capture 
all the salient features of the electrome-
chanical dynamics of the interconnec-
tion, the dispatchable and renewable 
generation resources, the market de-
signs and market participants, control 
area and balancing authority opera-
tions, and both the unresponsive and 
responsive loads. At the same time, it 
must remain computationally tractable 
in order to study large interconnected 
regions where inter-jurisdictional inter-
actions are important.

This paper is structured as follows. 
In Section 2, we review the agent-based 
methods used to solve quasi-steady 
models of interconnections, generation 
resources, and markets, with particular 

attention to the sub-hourly behavior of the system. Section 3 focuses on the prob-
lem of modeling individual and aggregated loads and load control at this time 
scale. Validation challenges and preliminary results loosely based on the Western 
Electricity Coordinating Council (WECC) planning model are discussed in Sec-
tions 4 and 5.

2 System model
Modeling the composite behavior of highly complex interconnected systems has 
been a challenge for engineers since the early days of digital simulators [7]. Recent 
advances in agent-based computing have helped overcome many of the barriers to 
simulation, particularly with respect to fi nding the solution to multiple systems of 
differential equations where the subsystem models are fundamentally incompat-
ible [20]. GridLAB-D™ is an example of a simulation environment that overcomes 
some of these challenges, in spite of the fact that its implementation raises issues 
regarding validation [21]. In particular, the lack of analytic solutions and proofs of 
stability continue to impair the usability of agent-based time-domain simulation as 
a control system design tool. Nonetheless, agent-based simulations are very useful 
as an environment in which to experiment, gain experience and insight, and quick-
ly demonstrate by modus tollens when a particular proposition or strategy fails to 
work as intended.

It has been previously observed that the bandwidth of renewable intermittency, 
short-term demand response, and frequency regulation coincide, as shown in 
Figure 1. This particular alignment between the primary operating bandwidth 
of demand response and wind intermittency presents both an opportunity and a 
challenge for system planners. The possible coupling of demand response and in-
termittent resources means that any feedback mechanisms and delays can give rise 
to instabilities if controls are not properly designed. However, for the same rea-
sons, well-designed control can give rise to highly effi cient performance, both from 
an economic and a control performance perspective.

2.1 Markets
Generating units cannot be started, stopped, or moved through their operating 

※ A reservation price is defi ned as the price at which a resource will decline to participate. For a producer, this is a lower price constraint; and for a consumer, it is an 
upper price constraint.

Figure 1. Temporal-scales for various electricity system processes.
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range without incurring additional costs. In general, the 
problem of setting the output power that a unit should run 
at in real-time is based on the area control feedback from the 
system, as it tries to follow load and adjust for generator out-
put fl uctuations. The determination of what range of output 
power is possible for the next hour is based on what the unit 
has been doing in the past few hours. The fi nancial impact of 
this autocorrelation is addressed through the two-settlement 
system [22]. This system decouples the real-time trades from 
any forward trades and guarantees that resources behave in 
real time as though the forward trades had not taken place, 
making them indifferent to errors in forward markets, and 
therefore removing any incentive to use the forward markets 
to increase profi ts in the real-time markets, or vice versa.

In a standard two-settlement system, contracts-for-
differences require loads to pay generators the difference 
between the contract price and spot prices. This requirement 
applies even when the difference requires the generator to 
pay the consumer, and permits either party to deviate from 
the contract if a profi table opportunity to do so arises with-
out adversely affecting the other party. If they trade over a 
potentially congested tieline, a financial transmission right 
provides the same guarantee with respect to transmission 
prices. The two-settlement system provides assurances that 
ineffi cient forward trades are corrected in real time without 
risk to the traders. Ex-post pricing cases can introduce spot 
price differences, which impose transmission costs on traders 
that cannot be hedged. Contracts-for-differences do not avoid 
these ineffi ciencies, and risks remain. This subject is an area 
of ongoing research in market design.

A unit commitment exercise determines which generating 
units and demand response resources to allocate and what 
level of production or demand is physically feasible and most 
economically effi cient over any given time interval. The mar-
ket affects how this problem is solved because only incentive-
compatible market designs will induce generators and loads 
to voluntarily and accurately provide the data needed to cor-
rectly solve the unit commitment problem. Power pools solve 
the unit commitment problem directly by ensuring an incen-
tive-compatible market design, whereas power exchanges 
ignore the unit commitment problem, forcing the generators 
and loads to take up the problem, and thus avoiding the 
incentive-compatibility question altogether.

In most organized markets, generating unit commitment 
schedules are developed hourly for each control area one day 
ahead. Generation resource availability is described using 
supply bids. The combined supply curve for all the dispatch-
able generation is added to the forecast of intermittent gener-
ation. Each unit, or fraction thereof, is committed in merit or-
der from the lowest to the highest cost. The process is similar 
for demand curves, except that demand response is commit-
ted in merit order from highest to lowest willingness to pay. 
Demand response resources are described using demand 
bids. Additionally, tieline exchanges are incorporated from 
unit commitment (hourly scheduling) through the economic 
dispatch (fi ve-minute redispatch) to regulation process.

The combined effect of these processes is illustrated in 
Figure 2. The supply and demand curves are cleared, given 

the available supply and both the responsive demand QR 
and unresponsive demand QU. The solution to the economic 
dispatch and optimal power fl ow is the interconnection-scale 
power flow when the global surplus is maximized over all 
control areas, which may require non-zero tieline fl ows. The 
main scheduler is not the subject of this paper, but its hourly 
outputs are vital to dispatch and regulation problems.

Figure 2. Hourly market for resource scheduling with exports.

The unit commitment problem can lead to the absence of 
classical equilibrium in a power exchange, which advocates 
of power pools point to as a serious fl aw [22]. The problem is 
a precursor of the renewable revenue adequacy problem in 
the sense that some generators that are part of the optimal 
dispatch may not cover their start-up costs. The power pool 
solves the problem by setting the price to the variable cost 
at all times and offering side-payments to cover any start-
up costs needed to follow the dispatch. Regulation reserve 
markets offer a suitably structured market mechanism to 
determine these side-payments separately from the primary 
energy market.

The control area scheduling problem includes the unit 
commitment and dispatch problems, which are central to the 
operation of bulk power systems. Resource intermittency is 
generally regarded as problematic for operations because of 
their limited predictability. The optimal selection of which 
conventional units to run (unit commitment) and the optimal 
output levels (dispatch) change in the presence of renew-
able resources [23] and can be expected to change further 
in the presence of significant demand response. Most solu-
tions to this problem address supply intermittency only and 
use Monte Carlo methods [24], probability density functions 
for combined load and wind [25], or probabilistic methods 
of cost assessment [26]. Unit commitment with demand re-
sponse has been considered as an optimization problem [27] 
and in conjunction with wind power [28, 29]. Stochastic unit 
commitment has been proposed as well [30] and can address 
the combined impact of wind power and demand response 
uncertainty.

These methods all require a time-domain simulation to 
solve the scheduling problem explicitly. However, for the 
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purposes of an agent-based simulation, 
it appears to be sufficient to discover 
the optimal outcome using distribut-
ed methods and avoid altogether the 
forecasting and central day-ahead unit 
commitment problem. Solving these 
problems “just in time” using market-
based methods such as transactive 
control allows a simulation to be con-
structed under the assumption that the 
system will maximize global surplus, 
if such an assumption is not within the 
hypothesis being tested.

It is useful to realize that the two-set-
tlement system of energy market opera-
tion assures us that the simulation is in-
different to the absence of a day-ahead 
market model. Any inaccuracies up to 
and including the complete absence of a 
forward price are cancelled by the real-
time market operation [22], provided 
the market design is incentive compat-
ible and all resources bid their true 
costs. Unless we seek to study incentive 
compatibility or strategic bidding, it is 
only necessary to model the real-time 
markets. The same principle can be ex-
tended to all multi-settlement methods 
of allocating regulation resources—it 
is not necessary to model tertiary (e.g., 
hourly) or secondary (e.g., fi ve-minute) 
dispatch markets because only the cost 
of primary (e.g., four-second) regulation 
responses to actual frequency devia-
tions will result in direct payments. It 
is on this basis that we consider regula-
tion control in relation to market-based 
dispatch problems.

2.2 Regulation
In most systems today, the energy mar-
kets we discussed above are not con-
nected to the regulation process, and 
ancillary service markets are sometimes 
implemented to address this shortcom-
ing. While it is our goal to change this 
situation, it is necessary that we review 
how regulation is currently done before 
discussing how it might be connected to 
energy markets.

The interconnection frequency is com-
puted based on the balance of supply 
and demand, the inertia and damping 
go together. Control areas are operated 
separately as wholesale energy markets 
with multiple time horizons converg-

ing on the real time. Generation units under the primary frequency control (gov-
ernor/speed droop) react to any frequency deviation considering their deadbands, 
while units under secondary frequency control respond to tieline deviations as 
well. The role of a secondary control system is to bring back the tieline flows to 
their schedule and also to zero out the steady-state frequency deviation using the 
most economical generation units. For this purpose, the area control error (ACE) is 
computed in order to be used by select generators to regulate their power output. 
Loads are operated as retail transactive energy markets with at least a capacity dis-
patch and possibly forward energy markets. The dispatch markets are similar to 
those demonstrated in the Olympic and Columbus demonstrations [16, 18], that is, 
a distribution capacity market for customer load and distributed generation, given 
a feeder constraint on bulk power supply. The system frequency control diagram is 
shown in Figure 3. Control area regulation is divided into three components when 
load is responsive to frequency: grid-friendly load (L), droop-controlled generation 
(GD), and ACE-controlled generation (GA). Both load and droop are driven exclu-
sively by deviations in frequency, while ACE generation is driven by both tieline 
fl ow error and frequency deviations.

※ In general, supervisory control and data acquisition (SCADA) systems do not guarantee that all devices are sampled at exactly the same time or rate.

Regulation control is based on deviations in frequency and tieline fl ows from the 
hourly unit commitment, economic dispatch, and optimal fl ow schedules, the details 
of which are beyond the scope of this paper. Primary regulation control is imple-
mented in part as generator droop control, under-frequency load shedding, and so-
called grid-friendly loads; and in part as a response to the ACE signal. The ACE sig-
nal is updated roughly※ every four seconds in each control area using the formula:

                                                
 ACE = (eA – eS) + B( f – fS)     (1)

where (eA – eS) is the deviation of the actual net exports eA over tielines from the 
scheduled net exports eS; B is the frequency bias of the control area; and ( f – fS) is 
the deviation of the interconnection frequency f from the scheduled frequency fS. 
Note that the ACE signal is typically fi ltered. This fi lter can be modeled using the 
transfer function 1/(1 + sTA), where the value of TA is typically greater than 10 s.

2.3 Agent-based modeling
As numerical simulation complexity grew with advances in computing power dur-
ing the 1990s, agent-based modeling became more popular. Today, it represents 
a departure from the classical simulation approach in which the model embeds 
the expected equilibrium based on the time-domain solution into systems of dif-
ferential equations representing the individual elements’ behaviors. Agent-based 
simulations instead represent the individual component and subsystem behaviors, 
which allows the outcome to emerge from the interactions between endogenous 
and exogenous conditions. Agent-based models allow for a more natural “bottom-
up” description and are more fl exible in how complex they can be and what can be 

Figure 3. System frequency and control area export regulation control diagram.
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observed during the simulation [31]. In particular, they al-
low different levels of aggregation and approximation to be 
utilized concurrently, which makes them particularly well-
suited for inter-disciplinary simulation studies. While these 
advantages are important and typically drive the choice of 
agent-based simulation over more classical simulation meth-
ods, model validation is a very important challenge with 
agent-based simulation.

Within 20 years of the advent of practical agent-based simu-
lations, hundreds of articles and publications on the subject 
of agent-based modeling methods had appeared and a con-
sensus began to emerge on the current practices for fi elds of 
study, software use, simulation purposes, and in particular 
validation techniques and criteria given the specifi cations of 
the simulation. In their survey of the literature, Heath et al. [32] 
found six key challenges inherent in using agent-based mod-
eling tools that are independent of the fi eld, tool, or problem:

(1) The development of agent-based modeling tools needs 
to be independent of the software that implements the 
simulation and results need to be published with details 
of the software and numerical methods used to obtain 
them so that others can reproduce the results.

(2) The development of agent-based modeling needs to 
progress as an independent discipline within the simu-
lation discipline with a common language that extends 
across domains.

(3) Simulation designers need to set expectations for their 
agent-based models so that these match their intended 
purposes.

(4) Complete descriptions of the simulation must be avail-
able so that others can independently evaluate the appro-
priateness and effectiveness of the models at supporting 
the results.

(5) The models used must be completely validated and 
documented in the article.

(6) Statistical and non-statistical validation techniques need 
to be specifi cally designed and developed in order to con-
vey performance objectives to those building the models.

These challenges are made all the more diffi cult to address 
because of issues that are intrinsic to agent-based simula-
tion. The fi rst is the dichotomy between the ease with which 
we capture the macroscopic behavior of the system and the 
difficulty of capturing microscopic behavior characteristics 
for individual agents. The second is that agent-based simula-
tions are particularly useful for those simulating highly non-
linear transient phenomena, for which analytic methods are 
not always available and are often difficult to apply gene-
rally. Finally, the amount of data that can be collected from 
an agent-based simulation typically far exceeds the amount 
of data available from the real-world systems that it simu-
lates, making comparison challenging even with the most 
robust statistical and analytical methods [33]. In spite of these 
considerations, agent-based simulations are generally consid-
ered to be well-suited to problems involving power dispatch 
using market-based mechanisms [21].

3 Resource modeling
The multi-layer/multi-temporal model of supply and de-
mand that we seek requires scheduling information from the 
wholesale market clearing at the hourly level to be incorpo-
rated into the five-minute dispatch market bids. Similarly, 
information from the five-minute dispatch market clearing 
must be incorporated into the regulation control. In this sec-
tion, we examine the supply and demand models for the 
scheduling, dispatch, and regulation in order to discern what 
information needs to be exchanged.

3.1 Supply
Supply bidding behavior is the same for scheduling and dis-
patch, and is represented using base and marginal prices for 
different unit classes (e.g., renewable, base-load, mid-load, 
and peak-load), as shown in Table 1.

Table 1. Generating unit dispatch prices and capacity mix.

Class Base price 
($ · (MW · h)–1)

Marginal price 
($ · (MW2 · h)–1) Mix (%)

Renewable 0 NA 10

Base-load 15 0.08 40

Mid-load 25 0.32 25

Peak-load 65 1.10 25

※ Wind forecasting is not required insofar as the multi-settlement system will provide for appropriate side-payments in the event that wind power is not as expected.

These values are used to construct an aggregate asymptotic 
supply curve [34]:

                      

2
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m

( ) 1
c
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= + −    (2a)

where qw is the amount of wind power dispatched; qm is the 
maximum available generating capacity, including wind 
power※ and reserves, and the curve parameters that fit the 
price and resource mix shown in Table 1 are

                   0 1 211.0 4.0 2.6c c c= = =   (2b)

Three types of generating units must be modeled for the 
regulation system: hydraulic, thermal reheat, and thermal 
non-reheat. The plant transfer functions (power output with 
respect to power control) of controlled units, including their 
governors are as follows.
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Thermal non-reheat units:
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where TG = 0.2 s, TR = 0.5 s, RT = 0.38, TW = 1.0 s, TRH = 7.0 s, 
TCH = 0.3 s, RP = 0.05, and FHP = 0.3 are typical values [7]. The 
transfer function of renewable units is zero because they do 
not provide either droop or ACE response. The combined re-
sponse of all controlled generation types is described by the 
transfer function G = ωhGh + ωsGs + ωcGc, where ωh, ωs, and ωc 
are the fractions of hydraulic, reheat, and non-reheat generat-
ing units under control.

Note that the incorporation of the dispatch clearing into the 
regulation system is not specifi ed, because this is an area of 
ongoing research and there is no consensus in the literature 
regarding how this should be done. Indeed, models such as 
the present one are required to support this type of research.

3.2 Price responsive demand
The composite load model was introduced to represent the 
aggregate load on feeders and correctly refl ect the impact of 
changing end-use load composition [35]. While this model 
reproduces many of the load behaviors seen in distribution 
systems, including motor stalling and thermal protection, 
it does not include some important behaviors related to de-
mand response control that can lead to large-scale system 
dynamics when loads are used as a reliability resource. In 
particular, it does not represent the feedback effect of state-
based bidding in real-time pricing systems, nor grid-friendly 
frequency response behaviors such as those demonstrated in 
the Olympic project. Unfortunately, many aggregate demand 
response models are too complex to model using low-order 
linear models [36]. Although some alternative load control 
designs offer the possibility of modeling fast-acting aggre-
gate demand response using very low-order load models [37].

Demand dispatch behavior can be represented in part using 
the random-utility model [38]. This model has been used in 
consumer valuation studies and comparative judgment con-
sumer problems [39]. It seems appropriate to use the random-
utility model for transactive control systems because the 
model makes two key assumptions that hold for transactive 
systems:

• The consumer’s choice is a discrete event in the sense that 
a consumer (or a device acting on the consumer’s behalf) 
must make an all-or-nothing decision, such as to run or 
not to run the air-conditioner. The consumer (or device) 
cannot choose to run at part-load for the next interval.

• The consumer’s attraction to a particular choice is a ran-
dom variable that changes very slowly in time and in this 
case corresponds to the comfort preference. We use the 
term “attraction” in the retailing sense, but we could just as 
well use the term “utility” to be consistent with economic 
theory. Regardless, it is the randomness of the comfort 
preference that is essential to this assumption, and it is 
assumed that the devices acting on behalf of consumers 
will rationally choose the outcome with the highest utility 
based on the consumer’s indicated preference for comfort.

In the absence of prior knowledge of the quantities demand-

ed by consumers, the derivation of the aggregate demand 
curve is based on discrete choice statistics for thermostats 
whose temperatures are constrained to a finite domain. For 
example, thermostats must choose a bid price as the reserva-
tion price above which they are willing to forgo demand. This 
is an exclusive choice of the bid price to submit, and it is a nec-
essary choice insofar as it is required to enable consumption 
at the clearing price. For a dichotomous choice, the reasoning 
is as follows: U is the consumer benefit (utility in economic 
theory) that the thermostat obtains from taking a particular 
action given the consumer’s preferences. This net benefi t can 
be assumed to depend on an unobservable characteristic α 
that has a logistic distribution and an observable characteristic 
β that has a logistic distribution. The net benefi t is defi ned as 
U = α + βx + , where x is the consumer’s decision and  is the 
random independent error. The action corresponding to that 
choice will be taken if U > 0. The relative probability of taking 
the action is then

                                     ( ){ } e xx α βρ − +=     (4)

The optimal consumer bid has a price that maximizes the 
benefi t while minimizing the cost of a positive outcome. This 
condition is satisfi ed when the marginal benefi t of the positive 
outcome equals the marginal cost of a negative outcome. In 
the absence of a reliable price forecast, the probability of this 
condition is 1/2 when  x = –α/β, given that the consumer’s 
present condition is 50% satisfi ed. Put in terms of a thermostat, 
this is equivalent to bidding the price p corresponding to 
the current observed temperature Ta, given the desired 
temperature Td and comfort K for an expectation for the mean 
price PA and its variance P 2

D, given recent history, that is, p = 
± K(Td – Ta)/PD + PA, where the sign of K will depend on 
whether a heating or cooling regime prevails. The consumer’s 
comfort preference is the dominant term in the quantity β, 
which the thermostat uses to make choices on behalf of the 
consumer. Thus the parameters for each consumer should 
be given as a function of difference ∆T = Td – Ta between the 
household’s actual indoor air temperature and the consumer’s 
desired temperature. A consumer’s utility is

                     c( ) ( ) [ ( ) ]U T T p T pα β∆ = ∆ + ∆ − +     (5)

where pc is the clearing price of power, and assuming that the 
random independent error is normal;  → 0, for a large num-
ber of customers.

The transactive control system used in the demonstration 
projects is at equilibrium when device state diversity is maxi-
mized and the total load is steady. This quasi-steady state 
occurs when the distribution of bids is symmetric about the 
mean price with the same relative variance. Rescaling for the 
physical quantities of an arbitrary system with unresponsive 
demand QU subject to the prices p and responsive demand 
QR, the total demand at the prices p is [34]

                          
A

R
U

2 1
( )

1 e
p

P

QQ p Q
η −

= +

+
    (6)

where η < 0 is the short-term elasticity of demand. Here the 
values  2η and –2η/PA represent the aggregate values of α 
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and β, respectively, taken over all the 
consumers.

This curve does not accurately rep-
resent the non-steady behavior of de-
mand response. In particular, when the 
diversity of load states is disturbed by 
a large price deviation, the curve skews 
to the left then to the right as the loads 
respond and recover from the price 
disturbance. Modeling the aggregate 
behavior of demand response following 
diversity disturbances is an ongoing 
area of research, but the overall behav-
ior is to cancel the effect of any distur-
bance within the time constant of the 
state diversity decay.

3.3 Grid-friendly load
Grid-friendly loads such as those stud-
ied in the Olympic demonstration pro-
vide very fast frequency response. A 
variety of under- and over-frequency 
grid-friendly strategies have been pro-
posed over the years [3, 40–42]. The 
specifi cs of these strategies vary, and no 
single model can be developed for the 
purpose of this paper. But in general, 
we can summarize the expected char-
acteristics of any grid-friendly response 
as follows.

• The initial response is very fast, 
reaching its peak in about one sec-
ond.

• The peak response is largely pro-
portional to the frequency devia-
tion and continues to be propor-
tional for more than 10 seconds.

• The response decay corresponds to 
a zero integral error feedback load 
recovery delay that is typically less 
than two minutes, although under 
certain conditions the decay can 
take longer.

A transfer function for load that ex-
hibits these behaviors is of the form:

            
2

L L

( ) sL s
T s s K

=
+ +

     (7)
            

where the fast response time constant 
takes a typical value of TL = 0.2 s and 
integral error feedback gain KL = 0.02.

3.4 Joint resource dispatch
The economic dispatch of short and 
mid-term demand response is designed 
to occur sequent ia l ly in mult iple 
markets. The hourly expected price 
PA of energy is determined from the 

wholesale energy markets and is used to set the expected price in the fi ve-minute 
retail capacity market. Demand response resources use this average price and an 
expectation of price volatility to submit bids for curtailable capacity to the dispatch 
market, which is cleared against the available supply, as shown in Figure 4.

Figure 4. Real-time (five-minute) resource dispatch double auction (left) and demand resource 
control (right).

This dispatch price is transmitted every fi ve minutes to all controllable resources 
within the control area. Although resources respond according to their bids, they 
should do so in a manner that is designed to avoid a pure step response to the price 
change. For loads that respond faster than generators, this may be achieved by 
adding a fi lter to the incoming dispatch price signal such that in the aggregate we 
have

                                    
C

L

1 ( )

C C C C C( ) ( ) [ ( ) ( )]e
t t

TQ t t Q t Q t Q t
− −

− = + −      (8)

where tC is the time at which the market was cleared; QC(tC) is the dispatch quan-
tity; and TL is a decay rate, which should not exceed the rate at which the control 
area can follow load, for example, about 98% response in 10 s using only generation 
resources. This suggests that a reasonable value is TL ≈ 2.5 s. As fast-acting demand 
resources are added, this value decreases. In the Olympic demonstration, the ag-
gregate frequency response was on the order of 90% in 0.4 s, or TL = 0.2 s [5], which 
is determined by the time constant of the local frequency measurement fi lter, and 
is the value used in Section 4.

Note that we opt not to use a constant ramp because, as with the step input, the 
response may create undesirable marginal stability problems with the load control 
system. While step or ramp inputs introduce one or two zero poles, respectively, 
the decay input introduces a single negative real pole at s = –1/TL with no stability 
concerns.

3.5 Regulation costs
The price of regulation control using so-called “grid-friendly” loads is based on the 
marginal price of demand and supply energy dispatch, RD and RS, respectively, in 
units of $· (MW2· h)–1:

                                           
R A

D
U R C C U2 ( )( )

Q PR
Q Q Q Q Qη

=
+ − −       (9a)

and

                                                        
2 C 0

S
S C

( )c P cR
Q Q

−
=

−       (9b)

These marginal dispatch energy prices provide linearized prices of energy per 
MW of supply and demand for their respective contribution to regulation control 
over the coming fi ve minutes. As slopes of the supply and demand curve, they are 
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the basis for pricing supply and demand regulation resource 
responses as a function of the magnitude of response 
required to return the system to schedule. This regulation 
price is

                                  
reg

R C

S D

1 1
Q

P P

R R

∆
= +

−       (10)

where ∆Qreg is the amount of additional power needed to 
bring both frequency and tielines exchange back to schedule; 
the current value of ACE is a reasonable approximation of 
this quantity. The marginal energy prices are also used to 
compute participation factors for supply and demand regula-
tion resource allocation:

                                     
D

S
D S

R
R R

ρ =
−       (11a)
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−
     (11b)

These participation factors are the gains on the supply and 
demand regulation control that would result in economically 
optimal regulation. The question of how these are incorporat-
ed into regulation controls remains an open area of research.

Although the marginal dispatch energy prices for 
regulation are often different for supply and demand 
resources, for any given frequency deviation, the price 
of regulation energy for all resources responding to that 
deviation will be the same, regardless of whether it is a 
supply or demand resource, as illustrated in Figure 5.

to provide regulation response at that time.
Because the original dispatch cost of PCQC has already been 

paid at dispatch time, it does not need to be collected again, 
so only the cost of the regulation of energy deviation from 
dispatch is considered. For speed droop control units, the 
payment is only for actual regulation performance ∆QSDC:

                                  SDC
SDC R

QC C
Q

∆
=

∆
     (12b)

The compensation provided to demand response resource 
is similarly computed based on the actual regulation control 
response ∆QDR:

                                  DR
DR R

QC C
Q

∆
=

∆       (12c)

For supply resources that respond to ACE, the computation 
must include the compensation for rectifying tieline devia-
tions. So we use the actual response of ACE control units 
∆QACE:

                                  ACE
ACE R

QC C
Q

∆
=

∆
     (12d)

Taking all these into account, for each dispatch interval (0, T ) 
the total regulation cost is

                   REG R C0
( ) ( ) ( )d

T

t
C P t Q t Q P t t

=
= ∆ + ∆∫      (13)

This mechanism acts like a Dutch auction, insofar as the 
fastest moving resources capture the highest prices and slow-
er resources can only receive payment for their lower value 
and delayed response. This mechanism is the essential foun-
dation of the downward substitutability that is necessary for 
real-time regulation markets, with respect to fi ve-minute dis-
patch and hourly scheduling.

The regulation cost is not necessarily collected from the 
units that cause regulation action, such as fl uctuating loads, 
intermittent renewables, and generating units that do not fol-
low redispatch. To correctly account for these costs, the regu-
lation price must be applied as a penalty to native resources 
that deviate from the schedule and/or the fi ve-minute redis-
patch. Having such a deviation penalty eliminates the ne-
cessity to implement separate imbalance markets. However, 
local regulation prices cannot be simply applied to tieline 
deviations, because the prices may differ on each end of the 
tieline. This problem appears to be an area that requires fur-
ther research.

The overall structure of the regulation model in the context 
of scheduling and dispatch is summarized in Figure 6. In 
summary, supply and demand bids arrive hourly from 
energy, capacity, and regulation resources to construct the 

Figure 5. Regulation resource response price when eS = 0.

Any change in frequency ∆ f will result in a change of net 
exports from the control area ∆Q, which corresponds to a 
change in energy price ∆P. The change in energy price will 
always be that which is required to induce the total change 
in supply and demand in order to adjust control area exports 
such that it provides the expected 5% frequency droop re-
sponse. All supply resources that provide regulation services 
through droop only should not be paid more than the total 
regulation cost:

 
                                R R CC P Q Q P= ∆ + ∆     (12a) Figure 6. Inter-temporal information fl ow diagram.
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validation based on a small number of historical datasets, 
and providing a more rigorous methodology for simulations 
that are grounded in empirical data [46]. As with the 
Werker-Brenner method, the history-friendly method also 
performs calibration first, but can more readily incorporate 
anecdotal or casual knowledge. However, it tends to be more 
microscopic in its focus, like the indirect calibration method.

Windrum et al. [46] also point out some important research 
gaps in the current research on agent-based model valida-
tion. In particular, none of the current methods overcome the 
problem of over-parameterization of the agent-based models. 
Realistic assumptions at the individual agent level often lead 
to many degrees of freedom at the macroscopic level, allow-
ing the model to generate any result and therefore reducing 
the explanatory power of the model to little more than a 
random walk. Causality between assumptions and results 
also becomes very diffi cult to study. Typically, this problem 
is addressed by reducing the number of degrees of freedom, 
which leaves the modeler with many alternative worlds from 
which to choose.

A second problem that has not been satisfactorily ad-
dressed is the interpretation of the counterfactual outputs 
of the model. It is not clear that the probability of observing 
a particular output from the model is at all representative 
of the probability of observing the same output in the real 
world, nor are we certain how to go about assessing whether 
or to what degree the model is explanatory.

Finally, the availability, quality, and bias of empirical da-
tasets is a significant consideration in the model validation 
process. Not all records are retained, and it is quite typical 
to fi nd that only “interesting” events are recorded or that the 
“uninteresting” data was deleted, essentially embedding a 
potential critical bias in the empirical data.

5 Results and discussion
The validation of agent-based models of joint economic-
power system models is still an immature science. We use the 
discussion in Section 4 as a general guide to help illustrate 
the approaches to validation we present in this section. Three 
elements of this model are examined in order to illustrate 
some of the validation methods discussed. We fi rst examine 
the open-loop response of a single control area to distur-
bances in frequency and tieline exchanges resulting from 
fl uctuations in renewable generation output throughout the 
interconnection. Next, we examine the closed-loop response 
of the system to a loss-of-generation contingency in another 
control area. Finally, we examine the change in system cost of 
regulation in the presence of demand response.

5.1 Control area response
The validation of regulation dispatch was conducted on the 
control area, generation, and load models working open 
loop in an interconnection—that is, such that the frequency 
and tieline flows are affected by the interconnection as a 
boundary condition and do not affect the interconnection 
itself. The control area operating assumptions are shown in 
Table 2, and the simulation results are shown in Figure 7.

supply and demand curves that are used to determine the 
hourly average price PA and the tieline schedule eS. The 
average price and tieline schedule are used by the fi ve-minute 
dispatch to determine the price and quantity for redispatch 
every fi ve minutes, as well as the regulation marginal prices 
for supply and demand, RS and RD, respectively. Regulation 
responses are measured each second in order to determine 
① the quantity deviation ∆Q required to maintain the tieline 
schedule and ② the regulation price PR required to obtain 
that quantity. Any fluctuations in regulation price PR are 
used to estimate the price standard deviation PD for the next 
dispatch interval, and the quantity deviation ∆Q is used to 
adjust the next dispatch and the next schedule so that step 
responses to schedule and dispatch changes account for the 
existing state of the system.

4 Validation
Simulation validation is often considered using Zeigler’s hi-
erarchy of model validity [43], that is, replicative, predictive, 
and structural. Variations on this taxonomy exist [44, 45], but 
for the purposes of validating agent-based simulations, Klügl 
proposes using only two levels [33].

• Face validation. This is an assessment of the model that 
is completed in three steps: ① Animations are observed 
by human experts in order to assess whether the mac-
roscopic behaviors of the simulation replicate those of 
the real-world system; ② the outputs of the simulation 
are assessed by a human expert in order to determine 
whether they are plausible, given the conditions; and 
③ a human expert assesses whether the system’s interac-
tion with any particular agent is appropriate from the 
agent’s perspective.

• Empirical validation. This is also performed in three 
steps: ① sensitivity analysis to show the effects of dif-
ferent parameters; ② calibration to determine the appro-
priate values to use; and ③ statistical validation using 
different data sets to ensure that the model is not just 
highly tuned to a particular scenario.

Three alternative methodological approaches have been 
developed in agent-based economics and are probably 
applicable to agent-based engineering: indirect calibration, 
the Werker-Brenner approach, and the history-friendly 
approach [46]. Indirect calibration is more microscopic in 
its focus and performs validation first and then indirectly 
calibrates the model by focusing on parameters that are 
consistent with output validation. The Werker-Brenner 
approach is perhaps the most relevant for calibrating agent-
based engineering models, because it includes a Bayesian 
inference procedure to validate output [47], which allows 
each model specification to be assigned a likelihood based 
on the compatibility of the theoretical realization with the 
empirical realization. This method is called “methodological 
abduction” and allows only shared characteristics that hold 
for both the model and the real system to be used, provided 
that the model is not based on any false premises. Windrum 
et al. argue that this approach has the advantages of reducing 
the number of degrees of freedom, avoiding the pitfalls of 
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 The results indicate that the model 
presents an acceptable regulation re-
sponse at the control area level, given 
reasonable assumptions regarding fi ve-
minute redispatch, renewable intermit-
tency, and the availability of demand 
response resources. In particular, a 
signifi cant loss of renewable generation 
corresponding to a wind overspeed 
cutout is shown starting around minute 
35 and lasting about 20 min. The avail-
ability of additional demand response 
shows significant decrease in both the 
magnitude and variance of the ACE 
signal in response to identical exoge-
nous frequency and tieline fl uctuations 
received by the control area, indicating 
an improvement in control system per-
formance in the presence of 11% versus 
< 1% demand response.

5.2 System response
The validation of under-frequency re-
sponse was conducted on the peak hour 
of the peak day by observing a single 
control area response to a 1% (of system) 
generation loss in another control area 
in the interconnection, given a closed-
loop response for all control areas in the 
interconnection. The interconnection 
and control area model parameters are 
shown in Table 3.

The ten-second and fi ve-minute closed-
loop system responses are shown in Fig-
ures 8 and 9, respectively, for different 
levels of demand response availability. 
The increasing amount of fast response 
in load shedding is observed in Figure 
8(c) as increasing demand response (DR) 
is dispatched. The corresponding re-
covery over the following two minutes 
is observed in Figure 9(c). In addition, 
it is also apparent from Figure 8(a) and 
(b) that increasing demand response 
dispatch decreases the magnitude of the 
frequency excursion and the amount 
of generation that is required to main-
tain exports. Overall, the total exports 
remain consistent for all demand re-
sponse dispatch levels, indicating that 
the overall impact on the system can be 
expected to be relatively insensitive to 
redispatch every fi ve minutes.

5.3 Regulation cost
The regulation costs for the closed-loop 
system scenario above are shown Table 4. 
The introduction of an additional 10% 

Table 2. Validation parameters for a single control area.

Parameter Value Unit

Generation Intermittency (1σ) 0.25 MW·s–1

ACE fi lter TA 78 s

ACE gain KA 0.4 (Unitless)

Demand Average short-term elasticity η –4 (Unitless)

Stdev short-term elasticity ση 1 (Unitless)

Unresponsive load volatility 0.05 %·s–1

Responsive load volatility 0.05 %·s–1

Interconnection Tieline volatility (measured) 0.09 %·s–1

Frequency volatility 0.5 mHz

Firm reserve requirement 25 %

Non-rm reserve requirement 85 %

Figure 7. Open-loop control area test. (a) Frequency and ACE; (b) power regulation.

demand response resource has a signifi cant impact on regulation costs, reducing 
the overall cost of regulation by 65%. In addition, there is a significant increase 
in the regulation payments to demand response from 2.4% to 22% of the total 
regulation payments from the control area.

The dispatch, regulation, and deviation penalty prices are shown in Figure 10 
for the study control area. The downward substitutability of resources is clearly 
visible, as fi ve-minute dispatch prices are lower than real-time regulation prices. 
The deviation penalties correspond strongly, but not exactly, to the regulation price. 

Table 3. Interconnection model parameters.

Parameter Value Unit

System Capacity 100 GW

Inertia 9 s

Damping 1 (Unitless)

Control area Capacity 1000 MW

Renewable 10 %

Hydro 10 %

Thermal (reheat) 60 %

Thermal (non-reheat) 20 %
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determining the penalties for tieline 
deviations requires reconciling the 
penalty prices in the area linked by 
the tieline, a capability that is not yet 
supported by this model.

6 Conclusions
This paper has presented an overview 
of the technical modeling requirements, 
implementation structure and algo-
rithms, and validation techniques that 
are necessary for quasi-steady agent-
based simulations of interconnection-
scale models that is needed in order to 
perform regulation response studies 
with integrated renewable generation 
and controllable loads. We present ap-
proaches for modeling aggregate con-
trollable loads that can be implemented 
in the same economic and control mod-
eling framework as generation resourc-
es when performing interconnection 
planning and operations research with 
signifi cant demand response deployed 
in the presence of intermittent renew-
able generation.

Agent-based simulations are increas-
ingly expected to be the basis of exten s-
ive system research in demand response 
control design, renewable integration 
studies, control area performance opti-
mization strategies, and market design 
studies. Model performance and system 
parameters typical of an interconnection 
approximately the size of the WECC 
and a control area about 1/100 of the 
size of the system are used to validate 
the methods presented. The results 
demonstrate that modeling approaches 
using agent-based methods produce the 
expected macroscopic system and con-
trol area behavior both in the absence of 
and in the presence of varying amounts 
of demand response.

The following open research ques-
tions have yet to be addressed by the 
present model. First, computing the 
hourly schedule for optimal flows that 

Figure 8. Interconnection under-frequency response (ten-second window). (a) Frequency; (b) ∆Gene -
r ation; (c) ∆Load; (d) ∆Exports.

Figure 9. Interconnection under-frequency response (fi ve-minute window). (a) Frequency; (b) ∆Gene-
r ation; (c) ∆Load; (d) ∆Exports.

Table 4. Regulation costs by resource type.

Cost element DR < 1% DR = 11%

Generation 58.3 17.1

   Droop 52.5 15.4

   ACE 5.8 1.7

Demand response 1.2 3.9

Total 59.6 21.0

This difference is caused by tieline deviations that cannot be accounted for by local 
dispatch deviation penalties collected within the control area. The mechanism for 
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maximizes global surplus remains 
an unmodeled process and must be 
provided as a boundary condition. 
Second, the interconnection is currently 
modeled as a monolithic machine, but 
in fact many individual control areas 
have links of varying electromechanical 
and economic strength between them. 
Third, regulation of tieline deviations 
is assumed to be on generation only at 
the other end of the tieline, when it fact 
it is most likely based on a similar mix 
of generation and demand response. 
Finally, tieline deviation costs cannot be 
fully recovered if schedule and dispatch 
deviat ion penalt ies are not levied 
against all participants, including load 
and intermittent generation.
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Nomenclature
ACE: area control error (MW)
B: frequency bias of the control area (MW· Hz–1)
c0: supply curve cost parameter ($· (MW· h)–1)
c1: supply curve scaling parameter ($· (MW· h)–1)
c2: supply curve scarcity parameter (unitless)
D: system damping coeffi cient (unitless)
eA: actual tieline exports from the control area (MW)
eS: scheduled tieline exports from the control area (MW)
f: current interconnection frequency (Hz)
fS: scheduled interconnection frequency (Hz)
G(s): generation control transfer function (MW/MW)
KA: generation ACE control fraction (pu·PG)
KL: load recovery response integral error feedback gain 

(unitless)
L(s): demand response function (MW/MW)
M: system inertial constant (s)
p: price function variable ($· (MW· h)–1)
PA: expected average energy price for the current scheduling 

interval ($· (MW· h)–1)
PB: bid price in fi ve-minute dispatch market ($· (MW· h)–1)
PG: total fi rm generation (MW)

PL: dispatched responsive load (MW)
Pload: local load disturbances (MW)
Psystem: system disturbances (MW)
Pwind: local wind generation disturbances (MW)
P(q): supply price function ($· (MW·h)–1)
QA: expected hourly average (i.e., scheduled) total dispatch 

quantity in a control area (MW)
QC:  actual five-minute total dispatch quantity in a control 

area (MW)
QD:  demand dispatch quantity in a control area (MW)
QR: total response load (MW)
QS: supply dispatch quantity in a control area (MW)
QU: total unresponsive load (MW)
Q(p): demand quantity function (MW)
qm: maximum generation capacity (MW)
qw: renewable (non-dispatchable) generation quantity
RD: marginal price of demand response at dispatch quantity 

($· (MW2· h)–1)
RS: marginal price of supply at dispatch quantity ($· (MW2·h)–1)
s: transfer function complex frequency variable (Hz)
TA: area control error fi lter time constant (s)
Ta: actual indoor air temperature (°C)
Td: desired indoor air temperature (°C)
TG: generation speed governor time constant (s)
Th: maximum indoor air temperature (°C)
T1: minimum indoor air temperature (°C)
TL: load frequency response time constant (s)
TR: generation reset time (s)
TS: indoor air temperature set-point (°C)
t: time variable (s)
tC: market clearing time (s)
x: consumer utility function decision variable ($· (MW· h)–1)

Figure 10. Demand response impact on (a) dispatch and regulation prices, and on (b) deviation 
penalty prices.
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α: unobservable consumer utility decision parameter (unit-
less)

β: observable consumer utility decision parameter (MW· h· $–1)
∆P:  price impact of net quantity deviation in control area 

($· (MW· h)–1)
∆Q: net control area dispatch deviation (MW)
η: short-term (i.e., fi ve-minute) elasticity of demand (unitless)
ρD: demand regulation participation factor (unitless)
ρS: supply regulation participation factor (unitless)
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