Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier.com/locate/eng

Research Hydro Projects-Article

基于中空微型水轮机的污水发电可行性研究

Tomomi Uchiyama^{a,*}, Satoshi Honda^b, Tomoko Okayama^c, Tomohiro Degawa^a

^a Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan

^b Graduate School of Information Science, Nagoya University, Nagoya 464-8601, Japan

^c Faculty of Human Studies, Taisho University, Tokyo 170-8470, Japan

ARTICLE INFO

Article history: Received 21 May 2016 Revised 21 June 2016 Accepted 6 September 2016 Available online 6 December 2016

关键词

微型水轮机 污水 发电 连接点 水力势能

1. 引言

污水由排放到下水道的雨水和人类生产、生活产生 的废水所组成,排污管道里含有人类生活、办公及工业 生产所产生的废水和废物。2011年,日本污水排放量约 为1.45×10¹⁰ m³[1],因此,污水蕴藏着巨大的能量。据 估计,污水污泥的沼气发电量和污水的水力发电量分别 约为3.6×10⁹kW·h·a⁻¹和4×10⁷kW·h·a⁻¹, 污水所含热能 约为7800 Gcal·h⁻¹ (1 Gcal·h⁻¹=1.163 MW) [2]。日本政府 意在将污水作为一种能源来加以利用, 然而, 污水的利 用率却很低: 污水污泥的能源利用率约为13%。目前, 日本污水供热设施有14个,小型水力发电厂有13个[2]。

污水处理设施包括诸如污水管道的排水设施、处理

厂的处理设施,以及泵站的辅助设施。前文预估的污水 能源的水力势能仅是指经处理设施处理后的水所含的能 量。2012年日本的污水管道总长约为4.5×10⁵ km [1], 其长度相当于绕地球赤道11圈,略长于总长达4×10⁵km 的灌溉渠道 [3],可推测这种水力势能分布在全国的污 水管道中。因此,利用排水设施(污水管道)中的污水进 行发电将有望实现小规模的分布式发电,这有利于当地 电力的自产自销。然而,目前这种污水发电还没有具体 的实施案例,排水设施中所含的水力势能仍有待进一步 研究。

水电是一种极具前景的可再生能源,且不容易受天 气因素的影响,在日本受到了广泛的关注。由于建设输 出功率达100 MW以上的大型水电站需要大坝和长距离

摘要

本文利用微型水轮机技术,着重对污水管道水力发电的可行性进行了研究。首先,对日本丰川河 流域排水系统两连接点处的污水流量进行了一年以上的观测,借此分析污水的水力势能;其次, 假定微型水轮机被安装在污水管道的连接点位置,通过实验室试验研究微型水轮机的性能。研究 表明: 污水管道的连接点处蕴藏有可用于全年发电的水力势能,同时,微型水轮机在该位置可以 有效地进行污水水力发电。

© 2016 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

^{*} Corresponding author. E-mail address: uchiyama@is.nagoya-u.ac.jp

^{2095-8099/© 2016} THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 英文原文: Engineering 2016, 2(4): 510-517

引用本文: Tomomi Uchiyama, Satoshi Honda, Tomoko Okayama, Tomohiro Degawa. A Feasibility Study of Power Generation from Sewage Using a Hollowed Pico-Hydraulic Turbine. Engineering, http://dx.doi.org/10.1016/J.ENG.2016.04.007

输水管道,而且要求这些水电站所在区域必须是发达地 区,所以建设输出功率在100 MW以下的小型水电站的 需求就越发迫切。这种发电站利用小型水力发电机进行 发电,而这些小型水力发电机又广泛分布在日本的河流 和灌溉渠道中。为此,研究人员已研发了数种微型水轮 机 [4-9], 然而这些微型水轮机经常被落叶、树枝及垃 圾等杂质阻塞,偶尔会无法正常发电。安装在微型水轮 机上游的过滤器可以去除杂质,但这种设备增加了微型 水轮机的运营成本,笔者正在研发一种可以极大程度地 使杂质通过的微型水轮机 [10,11]。这种微型水轮机的转 轮在中心轴周围有一个圆形中空部分, 使得杂质能够通 过转轮。目前正在实验室和河流的实地试验中对这种中 空微型水轮机的效率以及杂质通过性能进行测试。污水 中除了人们的生活垃圾外,还有浴室里的头发、厨房的 蔬菜残渣等,污水发电成功的关键在于水轮机没有被这 些杂质所阻塞,因而笔者正在研发的中空微型水轮机将 有望解决污水发电的这一难题。

此研究旨在探索一种利用管道污水进行水力发电的 可行性方法。首先,针对日本中部地区爱知县的丰川河 流域排水系统 [12],通过测量两个污水管道连接点处一 年内的污水流量来计算污水的水力势能;其次,假定微 型水轮机被安装在污水管道的连接点处,通过实验室试 验来研究中空微型水轮机的效率和杂质通过性能。

2. 丰川河流域排水系统的流量变化和水力势能

2.1. 丰川河流域排水系统概述

丰川河流域排水系统处理的污水来自日本爱知县东 部地区的四个城市(丰桥市、丰川市、蒲郡市和新城市) [12],其总排污面积约46 km²,人口约20万人,每日污 水处理量达1.04×10⁵ m³ (截至2015年4月1日)。丰川河 流域排水系统有四条干线:丰桥线、东武线、西武线和 水户线,总长约36 km。经丰川污水处理厂处理过的污 水被排放到三河湾,图1显示了排水干线、污水处理厂 与三河湾之间的位置关系。

丰川河流域的排水系统与这四个城市管理的公共 排水系统相连,连接部分被称为连接点。丰川河流域 的排水系统共有27个连接点,如图1所示,连接点用圆 圈表示。在连接点处,污水管道是打开的,因此可以 测量全年的污水流量。本研究测量了丰桥1和东武11-2 两连接点处的污水流量,根据实际流量来研究污水水 力发电的可行性。丰桥1连接点处的污水管道和污水如 图2所示。

图1.日本丰川河流域排水干线及排水系统连接点示意图。

图2. 丰桥1连接点处的污水管道和污水。

2.2. 连接点处的污水流量变化

在建设水力发电站之前,需提前一年在施工现场测量日均污水流量,以准确估算发电出力。按日均污水流 量降序排列,作出污水流量变化曲线图。2013年度丰 桥1和东武11-2两连接点处的污水流量变化曲线如图3所 示,图中第95天、185天、275天和355天的最大流量分 别称为高流量、正常流量、低流量和枯水流量,这些流 量分别用 Q_1 , Q_2 , Q_3 和 Q_4 表示,并在表1中列出对应的 流量大小。在丰桥1和东武11-2两连接点处,高低流量 之差(Q_1-Q_3)与正常流量 Q_2 之比(Q_1-Q_3)/ Q_2 分别约为 0.138和0.093,这表示年流量变化较小。在变化曲线中, Q_5 点处较小的梯度值也说明了这一点。

丰桥1连接点处的污水流量如图4所示,图中显示了 一年中每月污水的平均流量、最小流量和最大流量。平 均流量和最小流量几乎相同,且与正常流量Q2几乎相

图3.2013年度连接点处的污水流量变化曲线图。(a)丰桥1;(b)东武11-2。

表1	丰桥1和东武11-	2两连接点	处的污水流量
----	-----------	-------	--------

	Toyohashi 1 (m ³ ·s ⁻¹)	Tobu 11-2 $(m^3 \cdot s^{-1})$
High water discharge Q_1	0.172	0.145
Ordinary water discharge Q_2	0.159	0.140
Low water discharge Q_3	0.150	0.132
Droughty water discharge Q_4	0.135	0.120

当,但除了7月份、11月份、12月份和1月份外,每月 的最大流量却远远大于平均值,年变化量也大于平均流 量和最小流量。由于丰川河流域排水系统是一个分流排 污系统,理论上污水管道内只有污水流动;然而,包括 雨水在内的一些"来源不明的水"也会同污水一起流入 排水管道。图4上部的柱状图显示了丰桥市的月降水量, 观测点与连接点(丰桥1)之间的距离约为7 km,降水量 高的月份污水流量也会增高,这一趋势在9月份和10月 份最为明显。因此,最大污水流量远高于平均值且波动 明显的原因在于雨水流入了污水管道。

图5显示了东武11-2连接点处的污水流量变化以及 丰桥市的月降水量。其中平均流量和最小流量几乎相 同,但是8月份、9月份和10月份的最大流量远远高于平

图4. 丰桥1连接点处的月污水流量和丰桥市的月降水量。

图5. 东武11-2连接点处的月污水流量和丰桥市的月降水量。

均值,这种变化也是由于雨水流入污水管道造成的。

由图4和图5可知,9月份污水流量达到了最大值。 9月份丰桥1和东武11-2两连接点处的日平均污水流量 和日降水量如图6所示。9月16日当天的日降水量达到 120 mm,日平均污水流量也达到最大值,这一观察结 果进一步证实了雨水增加了污水流量。

2.3. 连接点处的水力势能

流体以速度u流动的水力势能P可表示为

$$P = \frac{1}{2}\rho Q u^2 \tag{1}$$

其中, ρ为流体密度; Q为流量。

如图2所示, 丰桥1连接点处的污水管道直径为

图6.9月份丰桥1和东武11-2两连接点处的日平均污水流量和日降水量。

1000 mm, 污水并不总是流经管道的整个横截面, 而是 沿着管道的底部流动。假设污水占据管道横截面积的 10%,则可以根据流量Q计算出流速u。当正常流量Q₂ 对应的流速u为0.159 m³·s⁻¹时,根据公式(1)计算的水力 势能P约为328 W,其中ρ为水的密度。采用同样的方法 计算东武11-2连接点处的水力势能P为222 W。

通过水轮机驱动发电机可以将上述水力势能P转 换为电能,考虑到发电机和水轮机的效率,将电能定 为0.2P。丰桥1和东武11-2两连接点处的电能则分别为 66 W和44 W。由图3可知,污水流量变化很小,因此可 假设各点的水力势能全年保持不变;那么一个直径约为 250 mm的通风扇所消耗的电能约为25 W,而一盏亮度等 同于60 W的荧光灯的LED灯泡所消耗的电能约为10 W。 因此,污水发电可用于连接点处当地的通风和照明。

3. 中空微型水轮机

在丰桥1和东武11-2两连接点处各需要一个水轮机 来将水力势能转换为电能。污水中除了人们的生活垃圾 外,还含有浴室里的头发、厨房的蔬菜残渣等。因此急 需这种不会被杂质阻塞的水轮机。

微型水轮机可以被安装在河流和灌溉渠道中进行发 电,但常常会被落叶、树枝和垃圾等杂质阻塞,由于 这种阻塞会使水轮机的性能降低,因此开发一种能够最 大限度地使杂质从转轮中通过的微型水轮机变得越发迫 切。笔者潜心研发了一种微型水轮机 [10,11],这种微型 水轮机的转轮在中心轴线处有一个圆形中空部分,杂质 在通过水轮机时不会造成阻塞,这种中空微型水轮机适 用于污水水力发电。本文通过实验室试验对其适用性进 行研究。 中空微型水轮机的横截面如图7所示。在两个固定 管之间插入圆形管(图中用红色阴影表示),它们的轴线 处于一条直线上。插入的圆形管由两个轴承支撑,从而 使其能够绕中心轴旋转,转轮(图中以蓝色表示)嵌进被 插入的圆形管内,当水流经过时,转轮连同圆形管围绕 轴线整体旋转。固定管和圆形管的内径为80 mm,圆形 管的轴向长度为195 mm,导向叶片(绿色部分)被安装 在固定管的一边,刚好在圆形管的上游方向。

图7. 中空微型水轮机的横截面图。

转轮示意图见图8,它有四个叶片,围绕旋转(中心) 轴有一个圆形中空部分,用来使水中的杂质从转轮中通 过,中空直径 D_2 与管道直径 $D_1(80 \text{ mm})$ 之比为中空率 ε , $\varepsilon = D_2 / D_1$ 。图8所示转轮的中空率 ε 为0.375。

图8.转轮 (E=0.375)

转轮由平板叶栅构成,转轮叶片的二维展开图如图9 所示,叶片规格参数见表2。叶片宽度B为23 mm、厚 度t为5 mm,入口角度和出口角度分别是a₁和a₂,都是 70°。本次研究采用新型试验来检测微型水轮机的杂质 通过性能,对试验中的转轮只进行了初步的设计,后期 可通过修改规格参数来提高其性能。

图10为导叶示意图,同样在中心轴周围有一个中空 部分,导叶直径与转轮直径相同。

图9.转轮叶片二维展开图。

表2 叶片规格参数

	Value
Blade width B	23 mm
Blade thickness <i>t</i>	5 mm
Inlet angle α_1	70°
Outlet angle α_2	70°
Number of blades	4

图10.导叶 (*ε*=0.25)。

中空微型水轮机的三维切割模型如图11所示,其中 转轮与外管道一起绕着轴线旋转,通过皮带传动来带动 发电机或扭矩仪工作。

图11. 中空微型水轮机三维切割模型。

4. 中空微型水轮机的实验室试验

4.1. 试验方法和试验条件

为了研究微型水轮机的性能,采用如图12所示的闭

环测试平台进行实验室试验。蓄水池中的水通过水泵进行循环,循环中的水又驱动微型水轮机转动。微型水轮机上游和下游的管道采用透明的丙烯酸树脂制成,由此可清晰看到进入环路的杂质状态。在上游导管320 mm 处和下游导管183 mm处可测量微型水轮机的水压,水流量则可用螺旋桨式流量计测量,这一装置被安装在微型水轮机上游的旁通管上。为了测量出水轮机的输出功率,可使用以水轮机驱动的扭矩仪来测量扭矩。水轮机的转速也可通过扭矩仪来测量,该值由与扭矩仪相连的磁粉制动器所控制。

图12.实验室闭环测试平台。

微型水轮机的效率η可表示为

$$\eta = T\omega / [Q(P_1 - P_2)] \tag{2}$$

其中,*T*表示扭矩; ω表示角速度; *Q*表示流量; *P*₁和*P*₂ 分别表示水轮机上游和下游的压力值。

图13是本研究所采用的转轮。转轮1曾被用于之前的试验 [10,11],转轮2是改进后的,转轮2的叶片前缘 是半径为15 mm的圆形,因此在运行时不会钩住杂质。

图14是本试验所用的导叶。导叶1有8个导叶片,曾 被用于先前的试验[10,11];导叶2有8个锥角为30°的锥

形导叶片;导叶3与导叶1所用的导叶片形状相同,但数量减少了一半。

对微型水轮机性能的研究以表3所示的转轮和导叶的4种组合而展开,流量Q为0.01 m³·s⁻¹。

表3 4种工况

Case 1	Case 2	Case 3	Case 4
Runner 1	Runner 1	Runner 1	Runner 2
Guide vane 1	Guide vane 2	Guide vane 3	Guide vane 3

为了研究安装在污水管道内微型水轮机的性能,在 实验室条件下,污水中含有的杂质用一些易于控制的物 质来代替。1 m³生活污水中含有大约0.2 kg的固体杂质, 而且人体排泄物中97%的成分被认为是水分,因此,污 水几乎可被认定为水。因为在污水的排放中毛发和纤维 垃圾不易被分解,它们会顺着污水管道向下流动,因而 容易出现微型水轮机被头发和废料阻塞的情况。为此, 实验室试验采用聚酯纤维来模拟污水管道中的杂质。图 15所示为聚酯纤维,每个球形纤维的直径约为20 mm、 质量约为0.2 g,这些纤维经过蓄水池的出口管被释放到 水中,出口管位于微型水轮机的上游,每次释放的时间 间隔为3 min。

4.2. 无纤维条件下微型水轮机的效率

首先, 微型水轮机的效率η是在聚酯纤维被释放到 水中之前测量得到的, 在之前的研究 [10,11]中, 我们 已经测出了工况1中的η值。图16表明了在工况1中, 中

图15.聚酯纤维。

空率 ϵ 对转速N和效率 η 之间关系的影响。每个中空率所 对应的试验数据都由三组测量数据组成,当转轮为实心 (ϵ =0)时, η 的最大值 η_{max} 是0.186,转速N在 η 达到最大值 η_{max} 时也达到最大值 N_{max} , 且 N_{max} =496 \mathbf{r} ·min⁻¹。当转轮 中空率 ϵ =0.25时, η_{max} 和 N_{max} 都略微减小,但减小幅度 并不明显。当中空率 ϵ 增加到0.375和0.5时, η_{max} 大幅减 小,并且转速最大值 N_{max} 也明显减小,这是由叶片的面 积变小所造成的;因此,水的能量并没有被完全转化到 微型水轮机上。基于上述结果,在测试微型水轮机性能 时,工况2、3、4试验中的中空率 ϵ =0.25,因为此时的 中空率并没有对水轮机的性能造成显著影响。

图16. 无纤维条件下水轮机转速、效率与中空率的相关性。

图17比较了当微型水轮机中空率ε为0.25,且树脂 纤维没有被释放到水中时,在试验工况1、2、3、4中微 型水轮机的效率。工况1中的η值最大。对于工况2来说, 使用带锥形导叶片的导叶(导叶2)会降低η值,这是因为 其导叶片面积比工况1中所使用的导叶片面积小,因此 水流不能被完全径直喷射出去。工况3中的η值比工况2 中的更低,尽管在工况3中使用了和工况1、2相同的转 轮,但其导叶(导叶3)只有4个导叶片,因此,流向转轮 上游的水流并没有被完全径直喷射出去。工况4中的η值 最低,尽管转轮(转轮2)使用的导叶与工况3的相同,但 导叶片前缘是半径r = 15 mm的圆形,除此之外,其导 叶片较转轮1的导叶片小,导叶片面积的减小降低了水 轮机的性能。

4.3. 夹带纤维引起的效率变化

图18表明了微型水轮机的效率 η 与释放到水中的纤维质量 $m_{\rm f}$ 的关系。在转速N达到最大值 $N_{\rm max}$ 时释放纤维,此时 η 在无纤维的条件下达到了最大值 $\eta_{\rm max}$,因此, η 在 $m_{\rm f}$ =0 g的情况下所对应的效率是最大值 $\eta_{\rm max}$,水中释放出的纤维会引起效率 η 的降低。在 $m_{\rm f}$ > 1.5 g时,采用带锥形导叶片的导叶的工况2的 η 值要高于工况1,这是因为纤维对导叶的附着力受到了抑制,见后文。对比工况3和工况4的 η 值,当 $m_{\rm f}$ > 1.8 g时,采用圆形叶片的转轮的工况4的 η 值要大于工况3,纤维对转轮的附着力同样

受到了抑制,正如后文所述。

图19对比了工况1、2、3中微型水轮机的效率,此 时 η 被 η_{max} 归一化。工况1与工况3的 η/η_{max} 值几乎完全相 同,但工况2的 η/η_{max} 值要更高一些。因此,工况2中的 导叶(导叶2)具有优良的纤维通过性能。

图19. 工况1、2、3中由夹带纤维引起的水轮机归一化效率的变化。

图20是工况1、2、3试验结束后的导叶图。工况1 中,纤维附着在导叶片前缘,工况3的导叶片进口处部 分位置被纤维阻塞。相比之下,工况2的导叶片上几乎 观察不到纤维。附着在工况1、2、3中导叶片上的纤维 的质量分别是0.312g、0.027g和0.170g。锥形导叶(导 叶2)在抑制纤维附着方面更加占优势。

图20. 工况1、2、3的导叶图。

工况3和4的效率比较见图21。两种工况都使用了导 叶3,但工况4的η/η_{max}值的减幅要小于工况3,所以可以 认为带有圆形叶片的转轮(转轮2)具有优良的纤维通过 性能。

工况3和4试验后的转轮图见图22。在工况3中,纤 维附着在了转轮叶片的前缘上,这是由于叶片前缘较锋 利,从而钩住了纤维;而在工况4的转轮中没有发现任 何纤维残余。在工况3和4中附着在转轮上的纤维的质量 分别是0.06 g和0 g。研究表明,圆形叶片(转轮2)的使 用对改善纤维通过性能有极大帮助。

图21. 工况3和4中由纤维引起的水轮机归一化效率变化。

Case 3

图22. 工况3和4的转轮图。

如图23所示, 微型水轮机可以被安装在污水管道内 的连接点处。为了便于设备的维护,该装置被设计成可 由起重机悬挂的微型水轮机。

5. 结论

为探究利用管道污水进行微型水力发电的可能性, 对日本丰川河流域排水系统两连接点处的污水流量变化 进行了研究,并估算了污水的水力势能。研究表明,丰 桥1和东武11-2两连接点处蕴藏可用于全年发电的水力 势能。

假定微型水轮机被安装在污水管道的连接点处,通 过实验室试验研究中空微型水轮机的效率及其杂质通过 性能。试验表明,带有圆形叶片的转轮和带有锥形导叶 片的导叶可以抑制纤维在微型水轮机上的附着力,从而 提高水轮机的工作效率,因此中空微型水轮机可用于管 道污水发电。

Compliance with ethics guidelines

Tomomi Uchiyama, Satoshi Honda, Tomoko Okayama, and Tomohiro Degawa declare that they have no conflict of interest or financial conflicts to disclose.

References

- [1] Japan Sewage Works Association. Wastewater works in Japan. Tokyo: Japan ewage Works Association; 2015. Japanese.
- [2] Systematization of resource/energy recycling [Internet]. Tokyo: Ministry of Land, Infrastructure, Transport and Tourism; c2008–16 [cited 2016 Apr 25]. Available from: http://www.mlit.go.jp/crd/sewerage/policy/09.html.
- [3] Sato Y. Participatory irrigation management in Japan [Internet]. [cited 2016 Apr 25]. Available from: http://www.maff.go.jp/e/nousin/kaigai/inwepf/i_ document/pdf/sympo_japan.pdf.
- [4] Alexander KV, Giddens EP, Fuller AM. Axial-flow turbines for low head microhydro systems. Renew Energ 2009;34(1):35-47.

8

- [5] Ikeda T, Iio S, Tatsuno K. Performance of nano-hydraulic turbine utilizing waterfalls. Renew Energ 2010;35(1):293–300.
- [6] Singh P, Nestmann F. Experimental investigation of the influence of blade height and blade number on the performance of low head axial flow turbines. Renew Energ 2011;36(1):272–81.
- [7] Stark BH, Andò E, Hartley G. Modelling and performance of a small siphonic hydropower system. Renew Energ 2011;36(9):2451-64.
- [8] Nishi Y, Inagaki T, Li Y, Omiya R, Fukutomi J. Study on an undershot cross-flow water turbine. J Therm Sci 2014;23(3):239–45.
- [9] Katayama Y, lio S, Veerapun S, Uchiyama T. Investigation of blade angle of an open cross-flow runner. Int J Turbo Jet Eng 2015;32(1):65–72.
- [10] Uchiyama T, Nishida Y, Ide Y. Development of a non-clogging micro-hydraulic turbine of propeller type [CD-ROM]. In: Proceedings of the International Conference on Power Engineering: ICOPE 2015; 2015 Nov 30–Dec 4; Yokohama, Japan; 2015.
- [11] Honda S, Uchiyama T, Ide Y, Okayama T. Study on a propeller type microhydraulic turbine excellent in foreign matter passage performance [CD-ROM]. In: Proceedings of the International Symposium on EcoTopia Science 2015; 2015 Nov 27–29; Nagoya, Japan; 2015.
- [12] 豊川流域下水道 [Internet]. Nagoya: Aichi Prefectural Government; [updated 2011 Oct 13; cited 2016 Apr 25]. Available from: http://www.pref.aichi. jp/0000020165.html. Japanese.