
Engineering 4 (2018) 61–77
Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier .com/ locate/eng
Research
Cybersecurity—Article
A DNA Computing Model for the Graph Vertex Coloring Problem
Based on a Probe Graph
https://doi.org/10.1016/j.eng.2018.02.011
2095-8099/� 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: jxu@pku.edu.cn (J. Xu).
Jin Xu a,⇑, Xiaoli Qiang b, Kai Zhang c, Cheng Zhang a, Jing Yang d

aKey Laboratory of High Confidence Software Technologies of Ministry of Education, Institute of Software, School of Electronics Engineering and Computer Science,
Peking University, Beijing 100871, China
b Institute of Novel Computer Science and Intelligent Software, Guangzhou University, Guangzhou 510006, China
c School of Computer Science, Wuhan University of Science and Technology, Wuhan 430081, China
d School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
a r t i c l e i n f o

Article history:
Received 10 December 2017
Revised 2 January 2018
Accepted 7 January 2018
Available online 25 February 2018

Keywords:
DNA computing
Graph vertex coloring problem
Polymerase chain reaction
a b s t r a c t

The biggest bottleneck in DNA computing is exponential explosion, in which the DNA molecules used as
data in information processing grow exponentially with an increase of problem size. To overcome this
bottleneck and improve the processing speed, we propose a DNA computing model to solve the graph
vertex coloring problem. The main points of the model are as follows:① The exponential explosion prob-
lem is solved by dividing subgraphs, reducing the vertex colors without losing the solutions, and ordering
the vertices in subgraphs; and② the bio-operation times are reduced considerably by a designed parallel
polymerase chain reaction (PCR) technology that dramatically improves the processing speed. In this arti-
cle, a 3-colorable graph with 61 vertices is used to illustrate the capability of the DNA computing model.
The experiment showed that not only are all the solutions of the graph found, but also more than 99% of
false solutions are deleted when the initial solution space is constructed. The powerful computational
capability of the model was based on specific reactions among the large number of nanoscale oligonu-
cleotide strands. All these tiny strands are operated by DNA self-assembly and parallel PCR. After thou-
sands of accurate PCR operations, the solutions were found by recognizing, splicing, and assembling. We
also prove that the searching capability of this model is up to O(359). By means of an exhaustive search, it
would take more than 896 000 years for an electronic computer (5 � 1014 s�1) to achieve this enormous
task. This searching capability is the largest among both the electronic and non-electronic computers that
have been developed since the DNA computing model was proposed by Adleman’s research group in
2002 (with a searching capability of O(220)).

� 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction However, the main challenge of this model is that the size of
In 1961, Feynman [1] proposed the idea of molecular comput-
ing, which was demonstrated by Adleman 33 years later. In 1994,
Adleman [2] presented a DNA computing model in which DNA
molecules were used as data, and enzymes and biological opera-
tions were used as tools in information processing. Since then,
the DNA computing model has been developed in several new
dimensions including theory, experiments, and applications. Stud-
ies in the past decade have shown that the DNA computing model
is superior in solving optimal and graphical problems, especially in
non-deterministic polynomial-time (NP)-complete problems.
DNAmolecules used as data in information processing grows expo-
nentially with an increase of problem size. This phenomenon is
called exponential explosion, and is the biggest bottleneck pre-
venting the development of DNA computing. To solve this problem,
a parallel type of DNA computing model is proposed in this article,
and several methods are used to overcome the biggest bottleneck.

In this section, we briefly introduce the latest developments in
DNA computing research, and then outline the major innovative
points of this article.
1.1. Previous results

In 1994, Adleman [2] first explored the computing feasibility of
DNA molecules by presenting a DNA computing model for the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eng.2018.02.011&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.eng.2018.02.011
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jxu@pku.edu.cn
https://doi.org/10.1016/j.eng.2018.02.011
http://www.sciencedirect.com/science/journal/20958099
http://www.elsevier.com/locate/eng

Fig. 1. A 3-colorable graph G with 61 vertices.

62 J. Xu et al. / Engineering 4 (2018) 61–77
Hamiltonian path problem. After that, many studies were designed
to show the advantage of the huge parallelism that is inherent in
DNA-based computing. In 1995, Lipton [3] proposed a DNA com-
puting model to solve the satisfiability (SAT) problem. In 1997,
Ouyang et al. [4] designed a DNA computing model for the maxi-
mal clique problem. By using the DNA hairpin formation, Sakamoto
et al. [5] solved the SAT problem. Rothemund [6] attempted to use
DNA as instruments to implement Turing machine. In addition,
DNA computing was applied to manipulate gene expression [7,8].
Winfree [9] proposed a sticker model by DNA self-assembly. In
2002, Adleman’s research group invented a DNA computer to solve
a 20-variable 3-SAT problem with a searching ability of 220 [10].

Graph vertex coloring is a way of coloring the vertices of graph
G such that no two adjacent vertices share the same color.
Although it is a classical NP-hard problem, graph coloring arises
naturally in a variety of applications such as timetable schedules
[11], register allocation [12,13], and so forth. The analysis of
approximation algorithms for graph coloring started with the work

of Johnson [14]. Subsequently, Oðn2=5log8=5nÞ colors were used to
color a 3-colorable graph with n vertices by Blum [15].
Karger et al. [16] provided a randomized polynomial time
algorithm that colors a 3-colorable graph on vertices with

min OðD1=3log1=2D lognÞ; Oðn1=4log1=2nÞ
n o

colors. Schiermeyer

[17] gave a complicated algorithm for deciding 3-colorability in
less than time O(1.415n). Beigel and Eppstein [18] improved the
bound by giving a fast algorithm for (3, 2)-constraint satisfaction
problem (CSP) for solving the 3-coloring problem in time O
(1.3289n).

The major research into graph vertex coloring based on DNA
computing is as follows: In 1999, Jonoska et al. [19] proposed the
potential application of three-dimensional (3D) structures in the
field of DNA computing, and showed that some DNA structures
could theoretically be used in DNA computing. In 2003, they con-
structed 3-arm and 4-arm DNAmolecules to solve the graph vertex
3-coloring problem based on the aforementioned studies [20,21].
Liu et al. [22] proposed a DNA algorithm for the graph coloring
problem based on surfaces. In 2003, Gao and Xu [23] presented a
new DNA computing model for solving the graph vertex coloring
problem, in which the technology of enzyme cutting was used to
eliminate false solutions. In 2006, using the magnetic beads sepa-
ration technology, Xu et al. [24] established a DNA computing
model to solve the graph vertex coloring problem; this model
was validated by a series of experiments.

1.2. Our results

We now present a novel DNA computing model for the graph
vertex coloring problem; although we focus on analyzing k = 3, this
method can be generalized to the situation of k > 3.

The basic idea of our model is to reduce the initial solution
space by using the optimal method and process the data by a
parallel polymerase chain reaction (PCR) operation. First, a given
graph is divided into several subgraphs in order to make the bio-
operations easier and delete as many false solutions possible. The
subgraphs can then be solved in parallel according to the following
steps: Determine the order of the vertices, determine the color set
of each vertex in the subgraph, encode the DNA sequences, deter-
mine the probes, construct the initial solution space, and delete the
false solutions (see Sections 3.3–3.7). Finally, the subgraphs are
combined into the graph and implemented to delete false solutions
gradually (see Section 3.8).

The main points of this article are as follows:① The exponential
explosion problem is solved by dividing subgraphs, reducing the
vertex colors without losing solutions, and ordering the vertices
in subgraphs; ② the bio-operation times can be greatly reduced
by using a parallel PCR technology. Thus, the processing speed is
remarkably improved in this model.

A 3-colorable graph with 61 vertices (Fig. 1) is used as an exam-
ple to demonstrate how to use this computing model to solve the
graph vertex coloring problem. In general, for a 3-colorable graph,
the computing complexity is 3n. Therefore, the computing capacity
of our parallel DNA computing model can reach O(359), when the
colors of vertices v1 and vn are given.
1.3. Outline of the article

This article is laid out as follows. In Section 2, we explain some
notations and definitions of the graph coloring problem and PCR
technology. In Section 3, the DNA computing model is illustrated,
including algorithm steps, bio-operations, and technologies. In Sec-
tion 4, a 3-coloring problem of a graph with 61 vertices is then
solved by this computing model, and the specific experimental
operations are described. Section 5 contains theory analysis, as
we carefully examine the complexity of overcoming the exponen-
tial explosion phenomenon. In the last section, we conclude the
article and point out the next possible research direction.
2. Notation and definition

2.1. The graph coloring problem

The work in this paper is always limited to finite, simple, and
undirected graphs. In a given graph G, V(G), E(G), dG(v), and CG(v)
denote the vertex set, edges set, degree of vertex v, and set of ver-
tices adjacent to v of graph G, respectively, and are denoted using
the short forms V, E, dG, and CG, respectively. We let V = {v1, v2, . . .,
vn} be the vertex set of a graph G, and denote the degree of vi as
d(vi) (abbreviated as di, i = 1, 2, . . ., n). A walk denoted by W is an
alternating sequence of vertices and edges, beginning and ending
with a vertex, respectively, where each vertex is incident to both
the edge that precedes it and the edge that follows it in the
sequence, and where the vertices that precede and follow an edge
are the end of that edge. A sequence of vertices is denoted by W,
where W = v1. . .vk ðk P 0Þ, beginning with vertex v1 and ending with
vertex vk, and where vi and vi+1 are adjacent (i = 1, 2, . . ., k � 1).

J. Xu et al. / Engineering 4 (2018) 61–77 63
The length of a walk is the number of edges in it. A path is a walk in
which all the vertices are distinct.

The vertex coloring of a graph G is an assignment from its vertex
set to a color set such that two ends of each edge are assigned two
different colors. Namely, it is a partition of V, where
VðGÞ ¼ V1 [V2 [� � � [Vk, Vi–£ (empty set), and Vi \ Vj ¼ £,
i = 1, 2, . . ., k.

The minimum number of colors needed for such a coloring is
called the chromatic number of G, and is usually denoted by
v(G). If a graph G can be colored by k (k � v(G)) colors, then the
color set is denoted by Ck(G). In this article, we limit ourselves to a
3-colorable graph G and we always assume that C3(G) = {r, b, y},
where r, b, and y denote red, blue, and yellow, respectively. In other
words, the 3-coloring problem of a given graph G can be solved if
we find a map f: V(G) ? {r, b, y} with the property "uv 2 E(G),
f(u) – f(v). The 3-coloring problem is a classical NP-complete prob-
lem [25]. Any terms and notations not defined here can be found in
Ref. [26].

Definition 2.1: Let G be a simple graph with the vertex set
V(G) = {v1, v2, . . ., vn}. Let vi1vi2. . .vin be an ordering of V(G), where
vij 2 V(G), j = 1, 2, . . ., n, and vij – vil if j– l. The number of edges
in the ordering vi1vi2. . .vin, denoted by Nedge(vi1vi2. . .vin), is defined
as follows:

Nedgeðv i1v i2 . . .v inÞ ¼ v ijv iðjþ1Þ 2 EðGÞ; j ¼ 1;2; . . . ; n� 1
� ��� �� ð1Þ
Fig. 2. A flowchart of the algorithm.
2.2. Polymerase chain reaction

PCR is a technique that amplifies a few copies of DNA across
several orders of magnitude, thereby generating millions or more
copies of a particular DNA sequence. The three parts of PCR are car-
ried out in the same vial with different temperatures. The three
steps in PCR are: the denaturation of the strands, annealing the pri-
mer to the template, and the extension of new strands. At the end
of a cycle, each DNA template in the vial has been exponentially
duplicated. After n cycles, the number of the DNA molecules is
y = (1 + x)n, where y is the copy number of DNA molecules, x is
the efficiency of amplification, and n is the number of cycles.

3. DNA computing model

In this section, we describe the DNA computing model in detail,
including algorithm steps, bio-operations, and technologies.

3.1. The algorithm of the model

In this model, limited PCR operations are exploited to delete the
false solutions of a graph, and the DNA strands representing the
true solutions of a given graph are sequenced to obtain the coloring
of the given graph. The algorithm of this model is shown in Fig. 2.

3.2. Subgraph division and bridge vertices determination

Subgraph division can improve the computing efficiency in two
aspects: On the one hand, the experiment can be operated more
easily; on the other hand, most of false solutions can be deleted
when constructing the initial solution space. Therefore, the appro-
priate division of a given graph G is of great significance in our
model. Here Gj, V(Gj) � V(G), E(Gj) � E(G), where j = 1, 2, . . .,
m � 1, is used to denote the primary subgraph. The method of
subgraph division is demonstrated as follows:

Step 1: Determine the size of the subgraphs. The number of
vertices in each subgraph should be consistent, ranging from 15
to 20. In addition, the edges in a subgraph should be as numerous
as possible. In this way, the experiments can be conveniently
performed, and most of the false solutions will be deleted when
the initial solution space is constructed for each subgraph. Taking
the graph G in Fig. 3 as an example, there are two divisions. In
one case, the graph can be divided into two subgraphs G0

1 with
vertex set V 0

1 ¼ f1;2;3;4;5;6;7;16;17;18;19;20;21;22g, and G0
2

with V 0
2 ¼ f8;9;10;11;12;13;14;15;23;24;25;26;27;28;29;30g.

In another case, the graph can be divided into two subgraphs G0
3

with V 0
3 ¼ f1;2;3;4;5;6;7;8;9;10;11;12;13;14;15g and G0

4 with
V 0

4 ¼ f16;17;18;19;20;21;22;23;24;25;26;27;28;29;30g. Obvi-
ously, the latter division method is better because the number of
edges in subgraphs G0

3 and G0
4 is greater than in G0

1 and G0
2.

Step 2: Obtain the first subgraph G0
1 with the bridge vertices u1

and u2. The bridge vertices should be adjacent and the sum of the
degree of the bridge vertices should be maximal. If more than one
pair of bridge vertices satisfy these conditions, we select the one
pair (u1 and u2) that result in Nedgeðu1 ¼ v i1v i2 . . .v in ¼ u2Þ being
the greatest (see Section 3.3 for more details). If more than one pair
of bridge vertices satisfy this condition, we then choose any pair.

Step 3: Determine the second subgraph G0
2 containing bridge

vertiex u2 and a new bridge vertex u3, which can be found using
the following methods: The bridge vertex should be adjacent to
the vertex u2, and the degree is maximal in G0

2. If more than one
pair of bridge vertices satisfy these conditions, then choose one
pair according to Step 2.

Fig. 3. An example of primary subgraph division. (a) Graph G; (b) subgraph G0
1; (c) subgraph G0

2; (d) subgraph G0
3; (e) subgraph G0

4.

64 J. Xu et al. / Engineering 4 (2018) 61–77
Step 4: Perform similar operations as those in Step 3 to obtain
the other subgraphs with their bridge vertices.

It should be noted that: ① the size of the vertex set of the last
subgraph Gm may not be equal to the others; and② the bridge ver-
tices in the last subgraph Gm may be u1 and um�1, which is the
bridge vertex of Gm�1 if u1 and um�1 are adjacent.

In our DNA computing model, the bridge vertices are very
important for the subgraph combination. The principle in choosing
bridge vertices is that the sum of the degrees of two bridge vertices
in one subgraph should be as large as possible. In this way, the size
of the color set of the vertices adjacent to bridge vertices can be
reduced (see Section 3.3). Moreover, the size of the initial solution
space can also be reduced.

According to the steps above, the four divided subgraphs of
graph G in Fig. 1 are shown in Fig. 4; the bridge vertices are 1,
16, 31, 46, and 61, respectively.

3.3. Determining the order and color set for each vertex in the
subgraphs

After subgraph division, the bridge vertices in each subgraph
are determined. The algorithm for ordering the vertices in a
subgraph should satisfy the following conditions: ① The bridge
vertices must be considered as two endpoints in the ordering of
the vertices subgraphs; and ② the number of edges in ordering
(see Definition 2.1) should be as great as possible. Here, we take
subgraph G1 as an example. Suppose that the vertex set of
subgraph G1 is V(G1) = {v1, v2, . . ., vt} with the bridge vertices v1
and vt. Without loss of generality, let the vertex sequence be
v1 = vi1vi2. . .vit = vt, which satisfies the following constraint:

max v ijv iðjþ1Þ 2 VðG1Þ; j ¼ 1;2; . . . ; t � 1
� ��� �� ð2Þ
here, we give the algorithm for ordering vertices. Let v be a vertex of
graph G. We start by defining the set of v-rooted paths, denoted by
P(v), then define all the paths starting with the vertex v in G.
The set of v-rooted paths P(v) in G can be determined as follows:
First, the neighborhood of v is determined; next, the neighborhood
of each vertex in C(v) that is represented as C2(v) without v is
obtained. Thus, C3(v), C4(v), etc. are obtained by the same method
above, which is called a pruning algorithm. Because the number of
vertices in each subgraph is less than 20, this algorithm can be
implemented easily.

Suppose that G1 with V(G) = {v1, v2, . . ., vt} is a subgraph, where
v1 and vt are the bridge vertices. We now give the algorithm for
ordering the vertices of the subgraph G1:

Step 1: Determine on the rooted paths P(v1) and P(vt). If the
v1-rooted paths P(v1) contain a Hamiltonian path of subgraph G1,
then order the vertices according to the Hamiltonian path. Other-
wise, order the vertices according to the following steps.

Step 2: If P(v1) [P(vt) = V(G1), then we consider path P1 in P(v1)
and path P2 in P(vt), respectively, where P1 and Pt satisfy the
following conditions: ① P1 = v1vi2. . .vir and Pt = visvi(s+1). . .vt;
② max{|E(P1)| + |E(Pt)|}; and ③ VðP1Þ \ VðP2Þ ¼ £.

Step 3: If V 0 ¼ VðG1Þ � Pðv1Þ [Pðv tÞ ¼ £, then we further find
the longest path from the induced subgraph G½V 0� and represent it
as P0 ¼ u1u2 . . .um. If V

00 ¼ VðG1Þ � VðP1Þ � VðPtÞ � V 0 ¼ £, then the
ordering of vertices for the subgraph G1 is v1vi2vi3. . .viru1u2. . .
umvisvi(s+1). . .vt. Otherwise, if V 00 ¼ VðG1Þ� VðP1Þ � VðPtÞ � V 0 ¼
fui1;ui2; . . . ;uiqg–£, then the ordering of vertices for the subgraph
G1 is v1vi2vi3. . .viru1u2. . .umui1ui2. . .uiqvisvi(s+1). . .vt.

Consider subgraph G0
3 with the bridge vertices 1 and 13 as an

example (Fig. 3). The path 1–10–11–2 is picked out from P(1),
and the matched path 13–14–7–8–15–3–9–4 is also obtained from

Fig. 4. Four primary subgraphs of graph G (shown in Fig. 1). (a) Subgraph G1; (b) subgraph G2; (c) subgraph G3; (d) subgraph G4.

J. Xu et al. / Engineering 4 (2018) 61–77 65
P(13). Then the path 5–6 is found in the remaining vertices. Finally,
V 00 ¼ f12g. A vertex sequence of G0

3 and the edges incident to the
vertices are shown in Fig. 5(a). A similar vertex sequence of G0

3 is
shown in Fig. 5(b).

The ordering vertices 1–2–. . .–16 in G1 in Fig. 4 are the best
order because P1 = 1–2–. . .–16. P1 = 1–2–. . .–16 is a Hamiltonian
path of G1, and 1 and 16 are the bridge vertices in G1. Another
ordering of the vertices in G1 is 1–3–5–7–9–11–13–15–2–4–6–8–
10–12–14–16, which has only five edges (f5;7g, f9;11g, f13;15g,
f15;2g, and f6;8g).

Step 4: Relabel the vertices in the subgraphs. Let the vertex
sequence be v1v2. . .vt before labeling, and vr(1)vr(2). . .vr(t) after
reordering. Obviously, the latter vertex ordering is obtained by
the permutation of the vertex subscript:

r ¼ 1 2 � � � t

rð1Þ rð2Þ � � � rðtÞ

� �

For example, for the vertex ordering of subgraph G0
3 in Fig. 5, the

mapping of the reordered vertices can be shown as follows:
Fig. 5. The ordering vertices and set of the corresp
r¼ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 10 11 2 5 6 12 4 9 3 15 8 7 14 13

� �

In general, the vertices of a subgraph should be relabeled
after ordering, and the vertex r(i) will be relabeled by i,
where i = 1, 2, . . ., t.

The chromatic number k in this article is 3, and the color set
C(3) = {red, yellow, blue} = {r, y, b}. The variables ri, yi, and bi
indicate that the color of vi can be chosen as red, yellow, or blue.

Considering subgraph G1, where V(G1) = {v1, v2, . . ., vt}, the ver-
tices v1 and v t are the bridge vertices in G1. In our model, the
bridge vertices are always adjacent, so vertices v1 and v t can be
colored red ðr1Þ and blue ðbtÞ in advance. (It should be noted that
vertex v t can be colored red or yellow, of course, when it is not
adjacent with a vertex colored blue. The true solutions with rt or
yt can be obtained by color permutation according to the coloring
with bt .) The vertices belonging to the set C(v1) will be blue or yel-
low, and those belonging to C(vt) will be red or yellow. The color
sets of the vertices of the four subgraphs in Fig. 4 are shown in
Fig. 6.
onding 11 edges for subgraph G0
3 in Fig. 3(d).

Fig. 6. All possible colors for the vertices of the subgraph when Cð1Þ ¼ fr1g,
Cð16Þ ¼ fb16g, Cð31Þ ¼ fr31g, Cð46Þ ¼ fb46g, and Cð61Þ ¼ fy61g are designated in
advance. Color set of each vertex in (a) subgraph G1, (b) subgraph G2, (c) subgraph
G3, and (d) subgraph G4.

66 J. Xu et al. / Engineering 4 (2018) 61–77
This method can be generalized to any situation where k > 3. If a
graph G can be colored by k (k � v(G)) colors, then the color set is
denoted by Ck(G), which can be defined as C3(G) = {c1, c2, . . ., ck}.
Then the k-coloring problem of a given graph G can be solved if
we find a map f: V(G)? C3(G) with the property that "uv 2 E(G),
f(u) – f(v). The other steps are completely the same as for the situ-
ation where k = 3.

This method greatly reduces the complexity of the initial solu-
tion space. The relevant formula and the analysis are given in Sec-
tions 3.2 and 5.2, respectively.

3.4. Encoding

As DNA molecules work through specific hybridization in the
computing process, encoding in DNA computing will be con-
strained by many factors such as the Gibbs free energy of chem-
istry, melting temperature, similarity of DNA sequences, length of
DNA sequences, experimental environment, scale of problems,
and so forth. Therefore, encoding is a very complicated and difficult
problem in DNA computing, and is considered to be an NP-
complete problem by several scholars. Many algorithms of DNA
encoding based on various constraints have been formulated thus
far. To provide good DNA strands for both specific hybridization
and PCR in this article, the DNA strands are designed based on
the following constraints:
� All sequences have no occurrence of five or more consecutive
identical bases;

� The GC content of all sequences is 40%–60%;
� There are no more than eight of the same bases between any
two sequences;

� There are no more than four matched bases in every sequence;
� For every sequence, five consecutive bases in both the 30 and 50

ends are mismatched with any five bases in other sequences;
� The absolute value of the change in the Gibbs free energy of
chemistry ðjDGjÞ of the primer dimer formed by its own
sequence is no more than 6.0 kcal�mol�1 (1 cal = 4.1868 J); and

� The absolute value of the change in the Gibbs free energy of
chemistry ðjDGjÞ of the primer dimer is no more than
9.0 kcal�mol�1, and the absolute value of the change in the
Gibbs free energy of chemistry ðjDGjÞ of the primer dimer
formed at the 30 end is no more than 6.0 kcal�mol�1.
Based on these constraints, the method described in Ref. [27]

was used to design the DNA strands; next, the proper sequence
was selected using the software Primer Premier 5.0.

It is easy to prove the following theorem.
Theorem 3.1: Let G be a 3-coloring graph with bridge vertices v1

and vn. According to the possible color set of each vertex, it can be
determined that the number of DNA sequences representing vertex
colors for any 3-coloring graph with n vertices is

NDNA 6 3n� dðv1Þ � dðvnÞ � 2ð3� 1Þ ð3Þ

In this article, 129 oligonucleotides (Table 1) were designed to
represent the possible colors of the vertices in graph G. These
oligonucleotides and their Watson–Crick complementary sequence
were denoted by xi and xi, where i = 1, 2, . . ., 61, respectively.

3.5. Determining probes

The advantages of DNA computing are its huge parallelism and
its great capacity for information storage. Over decades of research,
it has been recognized that the biological activity in artificial DNA
molecules is the main feature of the DNA computer. In particular,
the gravitation between hydrogen bonds dominates the process.
By making use of this feature, most of the false solutions can be
eliminated from the initial solution space. This eliminating process
cannot be carried out by electronic computers. To implement this
idea, the method of designing hybridization probes plays a signif-
icant role in deleting false solutions.

In this model, the method of designing probes is described as
follows (with chromatic number k = 3 as an example):

Step 1: Determine the color sets of each vertex. Let V(G) =
{v1, v2, . . ., vn}. Without loss of generality, let its ordering of vertices
be v1v2. . .vn. The set of possible colors for each vertex v i is denoted
by Cv i

, where i = 1, 2, . . ., n.
Step 2: Determine the set of probes. The probes are used to con-

stitute the initial solution space. Probes are only set up between
two consecutive labeled vertices v i and v iþ1, denoted by xixiþ1,
where xi 2 Cv i

, xiþ1 2 Cv iþ1 , and i = 1, 2, . . ., n � 1. If
9e ¼ v iv iþ1 2 EðGÞ, then xi and xiþ1 cannot have the same color,
and vice versa. For example, Cv7 ¼ fr7; y7g, Cv8 ¼ fr8; y8g, and
e ¼ v7v8 2 EðG1Þ exist in subgraph G1 (see Fig. 4), so only two
probes (r7y8, y7r8) are constructed.

Step 3: Determine the DNA sequence for each probe. The probes
xixiþ1 consist of the last half of the DNA sequence of xi and the first
half of the DNA sequence of xiþ1. In this article, the length of the
probe is 20 bases. For example, if y7 ¼ 50-AATACGCACTC
ATCACATCG-30 and r8 ¼ 50-GACCTTACCGTTTAGAGTCG-30, then
y7r8 ¼ 50-CGGTAAGGTCCGATGTGATG� 30.

To explain probe sets clearly, we utilize the graph theory
method. This method is very useful for reducing initial solution
space and theoretical analysis.

The probe graph of a graph G with n vertices, denoted by BðGÞ
(abbreviated as B), is defined as follows:

VðBÞ¼
[n
i¼1

Cv i
; where EðBÞ

¼
[n
i¼1

�x�z;�x�z is a probe; x2Cv i
; z2Cv iþ1

� � ð4Þ

According to the definition of probes and Fig. 6, the 3-coloring
probe graphs of four subgraphs (see Fig. 4) are shown as B1, B2,
B3, and B4 in Fig. 7. It is easy to identify information on probe num-
bers and distribution from each probe graph.

Table 1
DNA sequences for each xi.

xi DNA sequence xi DNA sequence

r1 50-CTGGT CCTCT CCTCT AATCC-30 y2 50-AAGAG AGAAC CGAAC TGTCC-30

b2 50-ACTTG AGCAC TGACC TGACA-30 r3 50-AAGAG GCTAC GGACA CTACT-30

y3 50-AAGGA TGAAC CATCG CACAG-30 r4 50-TAGGT GCTAC AGATT CGTCC-30

y4 50-AAGTC TGAAC GCCTA CTCAC-30 y5 50-CAGAA CACAG GTATG CGATT-30

b5 50-AAGAC CACAC CACAG CATTC-30 y6 50-CGTGA TTGTT GGACT ATTGG-30

b6 50-CCTTG TAGAC CCAGA TGTTC-30 r7 50-CGTTG CTCTG AATAG TTGCC-30

y7 50-AATAC GCACT CATCA CATCG-30 r8 50-GACCT TACCG TTTAG AGTCG-30

y8 50-AATAC ATCAG AGCGG AGACC-30 r9 50-ATGGT GGAAA TCTAC TCGCC-30

y9 50-AAGGC TACAA ACTCA CCGAC-30 b9 50-AGGAG GTTTG TTAGC CAGTC-30

r10 50-ACAGA AAGAA ACTCG CTTCG-30 y10 50-GAAGA TGAAC CAGCC TAACC-30

b10 50-AAGTG AACAG TGTGA CCACC-30 r11 50-TCACA TTAGT GTCAC AGCGG-30

y11 50-CAGAG ACAAG ACGAA CCTGT-30 r12 50-TAGAA GAAGC AACCG TCTGT-30

y12 50-AACTT GTTCC ACACA CCCTC-30 r13 50-GCTTA TGTAT CCTGG CACTG-30

y13 50-ATGAG TTACA AGCAC CACGC-30 b13 50-TACAG GGTCT TCAGA ACGAT-30

y14 50-ATGTC TCGTC AGGAT GTCGT-30 b14 50-TTCCC TACTA CCTTC CCAAG-30

r15 50-ATGCC TCAAC AACTC CTGCT-30 y15 50-ATGGT ATGAA GCCTG ACTCG-30

b16 50-GGATT GTATT GGCGA TGATG-30 r17 50-TACAT TCAAG GACGA CAGGT-30

y17 50-CAAAG TGTAG GCAGG GTAAC-30 y18 50-AAGCG GTAGA CACGA TTCAC-30

b18 50-TAGAG TCCAC CGAAG ATAGC-30 y19 50-ACTGC TAATG ACTCG TTCCG-30

b19 50-AGTAT CTGTC CTGTC TCACC-30 r20 50-GTGGT CGTAG ATGTC ACTCC-30

y20 50-AACTA ACGAC CAGAG CCGAT-30 r21 50-TAGTC ATAAG TGACC TCGGC-30

y21 50-ATCTC CATCC AACCA TCCAG-30 b21 50-AATCA ACTGG TCACG ACTGC-30

r22 50-GTTAT GAGTC GCAGC ACACG-30 y22 50-TAGTG CGGAA CCTAT CTTGC-30

r23 50-AAGTG GAGAC ACTCA CTACC-30 y23 50-AAGTA TCAGA CAGCC ATCCG-30

y24 50-AAGTT GAAGG CTTAC GAGAC-30 b24 50-ATGTC AAGCA TACCG TCACC-30

y25 50-ATGTG TATGT TGCGA CAAGC-30 b25 50-GATTA TCGTC CAGCC TTCTC-30

r26 50-CCTCC GTAGT TATTG ATGCC-30 y26 50-GTTAC GGTTG ACTCT GCTGA-30

r27 50-CACTT CTACC CTCAA CCTCA-30 y27 50-TAGTA GAAAG CCGAC CACTC-30

y28 50-CGTGG AAGTC ACTAA GGTCT-30 b28 50-ATTCT TCACT GAGGT GCTGG-30

r29 50-TAAGT GAGAA TGCCA GTTGC-30 y29 50-CGAGA TGTTG TAAAG GCTGC-30

b29 50-GGTAT GTAAC AAGAC GCACG-30 y30 50-GGTCA TTATG GGCAT AGTGG-30

b30 50-AACAT TTACT CGTCG TTCGC-30 r31 50-GCTCA GGAGT GTTTA TGACC-30

y32 50-TAGTC CATCG GCAAG GTTCT-30 b32 50-AACAC CACAG AGCAT TCACG-30

r33 50-AAGTG CTGAA ACCGT GGAGT-30 y33 50-TACTG AGAAC GCTCG CTCTT-30

b33 50-ATGTC ATAAT GCCGT TCCTG-30 r34 50-GATGT TGCCA TAACT GCCTG-30

y34 50-CTACT TATTC GTCAG CGTCG-30 y35 50-GATGA TTACA CTCGC ACAGG-30

b35 50-GAACA TAATG GACCG ACCTC-30 r36 50-ATCTG TGCTA TCTCG TGCTC-30

y36 50-AACTT ACCAT TGGCT TCTGC-30 b36 50-GATAA ACGAG TTCGC ATAGC-30

r37 50-GCAGT AGACG ATACG ACTCC-30 y37 50-CGAAG AAGAT TACCC AGAGG-30

r38 50-AAGCA CTCAA CAGTA CGAGC-30 y38 50-GGTGA TGGTT GAAAG TCTCC-30

b38 50-TAGAG ATTGG ACGGA AGACG-30 y39 50-TAGGT ATAGG TCGTT GAGCC-30

b39 50-CAAGT CACAA TCGTA GGTGC-30 r40 50-GCTAA CAGTG GTCAG ACACG-30

y40 50-AATAC CACCT GACTG CGTAG-30 b40 50-AATAC ACTAT CCAGC GACGG-30

r41 50-GGTGT AAGCC TCCGT ATTAG-30 y41 50-GGAAC CTACT CTGGA TGAAG-30

r42 50-GGTAA CGATC CTGAT AACGC-30 y42 50-GCTGT CCAAC CAGGT CTTAC-30

y43 50-CCTAC ACATC AATCA GCACC-30 b43 50-CCTTA CAAAT CGCCT ATGGT-30

r44 50-CCAAA CTTGC TTACT TCAGG-30 y44 50-CAAAG AGTTA GTCGG GTCTG-30

b44 50-CTTCT ATGTT TAGCC CGAGG-30 r45 50-GCAGG ACAAG GCTCA TAGTT-30

y45 50-GTGAC GCCAT CATTT GAGAT-30 b46 50-CTATC AGAAA CCCGT CAGAG-30

r47 50-GCTGA CTTCA CGGAT TTGGA-30 y47 50-CGAAG GACTT AGTAA CGAGG-30

r48 50-CCTAT GCCTA AATGG TGTCG-30 b48 50-CCTGT CCGAT AGAAT AGTGC-30

r49 50-AGTTG CGTCC ACGAA AGTAG-30 y49 50-GCACT CCCAA TGTGT TATGA-30

r50 50-AGGCT CCATC TTGAG AACTG-30 y50 50-GCTGG CGACT ACTAT TTACG-30

r51 50-GCTCT CCCTT ATGGA ATGAT-30 y51 50-CACTA AACAA CGCAG GGTTC-30

b51 50-CAGCA ACCAC ATCGG TGATA-30 r52 50-GACCT CCTGA AAGAG TACGA-30

y52 50-GTCAC CTGCT AGGAG GATTC-30 r53 50-GAGTC GTCGG AGATA AGGTT-30

y53 50-GAATA CCTGT GCTAC CGAGT-30 b53 50-GGATA GCGAT TGACT GAACG-30

r54 50-CTGAG TCCTT TGAGT AAGCC-30 b54 50-CAGAT AGACT CCGCT GAGGT-30

r55 50-GAGTT CCATT GTGGC AGAAG-30 y55 50-GCATT TCACA GTCTT CTCGC-30

r56 50-GATTA CTCCA CCCTC GTGTA-30 y56 50-CAGTT ACATT GAGCG GAAGC-30

r57 50-CAAGT ATGGC TCACA TTCGT-30 b57 50-CAAAC AGGCG TCTCT TTATG-30

r58 50-CAAGC AGCAC GATGA CTCTA-30 b58 50-GACTT GCTCT GCGTG AGATT-30

r59 50-GACAT TGCTG AATCA GTGGT-30 y59 50-GCTAC TGCTA AGGGT AATGC-30

r60 50-GCACT GTATG ACAGG TCACG-30 b60 50-CGTTA GGACC TGGGA TAATC-30

y61 50-GATTA CTCCA CCCTC GTGTA-30

J. Xu et al. / Engineering 4 (2018) 61–77 67
3.6. Construction of the initial solution space

The method presented by Adleman [2] is used to construct the
initial solution space of each deduced subgraph. The DNA
sequences representing the possible solutions in the initial solution
space are amplified in a series of operations:
� First, the 50-ends of DNA sequences xi are phosphorylated by T4
polynucleotide kinase (PNK);

� Second, the product of phosphorylation and probes are mixed in
10 � T4 PNK buffer for annealing;

� Third, the annealed products are ligated by T4 DNA ligase in
10 � T4 DNA ligase buffer; and

Fig. 7. Probe graphs for the subgraph shown in Fig. 4. (a) B1; (b) B2; (c) B3; (d) B4.

68 J. Xu et al. / Engineering 4 (2018) 61–77
� Finally, the ligated products are amplified by PCR with the
primer pair hr1; xti. The amplified DNA strands represent all
possible solutions of each subgraph.
In this article, the initial solution space of subgraph Gj is

denoted by S(Gj), where j = 1, 2, . . ., m, and m is the number of sub-
graphs. Let t = |Gj| and V(G) = {v1, v2, . . ., vt}. Then S(Gj) = {x1x2. . .xt},
where xi 2 Cv j

� fr; b; yg, and i = 1, 2, . . ., t. If each xi has l bases,
then the length of the DNA sequence in the initial solution space
will be t � l.

It should be noted that if e = vivi+1 2 E(G), then xi and xi+1
cannot share the same color when constructing the probes. In
this way, the false solutions in which adjacent vertices have
the same color will be deleted when constructing the initial
solution space. Thus, the more edges e = {vi, vi+1} there are,
the more false solutions will be deleted in the initial solution
space. The details of the theoretical analysis will be shown in
Section 5.2.
3.7. Deleting false solutions

In this section, the methods of deleting the false solutions of
each subgraph are described. Let Ej

1 = {vivi+1 2 E(G), vivt 2 E(Gj);
i = 1, 2, . . ., t � 1}, and Ej

2 = {v1vi 2 E(Gj), i = 2, 3, . . ., t}. Then
Ej

3 = E(Gj) � Ej
1 � Ej

2 and j = 1, 2, . . ., m.
In fact, the process of deleting false solutions involves eliminat-

ing DNA strands that represent the improper coloring of the
vertices incident to the edges in Ej

3 from the initial solution space
S(Gj). In the process of bio-operation, PCR is used to delete false
solutions. To improve the processing speed, the edges in Ej

3 are
divided into two groups and each group is operated using different
procedures.
(1) Forward Path. In our experiment, a false solution is deleted
by a so-called parallel PCR operation on the forward paths. Here,
we introduce a definition of forward path.

Let G1 be a subgraph with V(G1) = {v1, v2, . . ., vt}, and let
v1v2 . . .v t be a vertex ordering of G1 according to the method
shown in Section 3.3. For 8e ¼ v iv j 2 EðG1Þ, if i < j, then e ¼ v iv j

is a forward edge; otherwise, it is a backward edge. If all the edges
in a path are forward edges, then the path is a forward path; other-
wise, it is a backward path.

Now, for example, we take a path P ¼ v iv jvyvz,
1 < i < j < y < z < t (other paths are treated in the same way). In
this path, there are three edges:v iv j,v jvy, andvyvz. First, PCR is done
with primer pairs: hx1; xii, hxi; xji, hxj; xyi, hxy; xzi, and hxz; xti, where xi
and xj, xj and xy, and xy and xz should not have the same color at the
same time. In this way, the DNA strands are separated into five frag-
ments. Subsequently, these small fragmentswill be combined grad-
ually to generate DNA strands with t � l base pairs (bp). Thus, at the
end of PCR operations, the DNA strands representing the improper
coloring of these vertices incident to the three edges will be elimi-
nated from SðGjÞ. Detailedexperimentalmethods and the theoretical
analysis are given in Sections 4.4 and 5.3, respectively.

(2) Single edge. Some single edges exist in E3
j after deleting all

false solutions from forward paths. Let e ¼ v iv j, xi 2 Cv i
, and

xj 2 Cv j
. PCR is run with primer pairs hx1; xii, hxi; xji, and hxj; xti.

Here, xi and xj should not have the same color. In this way, the
DNA strands representing improper coloring of the vertices
incident to the edge are not amplified. That is, the DNA strands
representing false solutions are eliminated. When the DNA strands
representing improper coloring of the vertices incident to the
edges in E3

j are all deleted, the amplified DNA strands in SðGjÞ rep-
resent the colorings of subgraph Gj, where j = 1, 2, . . ., m.

J. Xu et al. / Engineering 4 (2018) 61–77 69
3.8. Subgraph combination and deletion of false solutions

After obtaining the true solutions of each subgraph, these sub-
graphs are combined to generate secondary subgraphs. Then the
process of deleting false solutions continues. This process involves
the following three steps:

Step 1: Combine subgraphs Gj and Gjþ1, where j = 1, 2, . . .,m � 1.
The DNA strands representing the improper colors of the sub-
graphs will be linked together to generate new DNA strands by
the DNA sequence of the bridge vertices. These new DNA strands
will be processed as the initial solution space of the secondary
graph G½VðGjÞ [VðGjþ1Þ�. If jVðGjÞj ¼ t1 and jVðGjþ1Þj ¼ t2, then the
length of the DNA strands generated is ðt1 þ t2 � 1Þ � l.

Step 2: Delete the false solutions of secondary graph
G½VðGjÞ [VðGjþ1Þ� according to the method described in Section 3.7.
That is, the DNA strands representing the color of the vertices inci-
dent to the edge in Ej;jþ1 ¼ fuv 2 EðGÞ;u 2 VðGjÞ;v 2 VðGjþ1Þg will
be amplified, but the false solutions will be eliminated.

Step 3: Repeat Steps 1 and 2 for the secondary and new com-
bined subgraphs until the original graph is completely reshaped.
Thus, the DNA strands representing the true solutions of G will
be obtained.

3.9. Detecting the true solutions

The DNA strands representing the true solutions are sequenced
and analyzed by Gene Tools to obtain the proper coloring of the
graph.

4. Implementation of the model

To implement this DNA computing model, consider the graph
with 61 vertices shown in Fig. 1 as an example. The scale of this
problem is the largest to be solved by DNA computing. The proto-
col of the assay is given in this section. The result illustrates that
the computational capability of the DNA computing model pro-
posed here is as high as O(359).

4.1. Dividing the graph and determining the color set

According to the methods demonstrated in Section 3.2, graph G
(Fig. 1) can be divided into four subgraphs (Fig. 4); the color set of
each vertex is shown in Fig. 6.

4.2. Encoding

According to the methods in Section 3.5, 129 oligonucleotides
(Table 1) were designed to represent the possible colors of all ver-
tices, and 185 probes were constructed according to the probe
graph (Fig. 7).

These probes are: r1y2, r1b2; y2r3, b2r3, b2y3; r3y4, y3r4; r4y5, r4b5,

y4b5; y5b6, b5y6; y6r7, b6r7, b6y7; r7y8, y7r8; r8y9, r8b9, y8r9, y8b9;

r9y10, r9b10, y9r10, y9b10, b9r10, b9y10; r10y11, y10r11, b10r11, b10y11;

r11y12, y11r12; r12y13, r12b13, y12r13, y12b13; r13y14, r13b14, y13b14,

b13y14; y14r15, b14r15, b14y15; r15b16, y15b16; b16r17, b16y17; r17y18,

r17b18, y17b18; y18b19, b18y19; y19r20, b19r20, b19y20; r20y21, r20b21,

y20r21, y20b21; r21y22, y21r22, b21r22, b21y22; r22y23, y22r23; r23y24,

r23b24, y23b24; y24b25, b24y25; y25r26, b25r26, b25y26; r26y27, y26r27;

r27y28, r27b28, y27b28; y28r29, y28b29, b28r29, b28y29; r29y30, r29b30,

y29b30, b29y30; y30r31, b30r31; r31y32, r31b32; y32r33, y32b33, b32r33,

b32y33; r33y34, y33r34, b33r34, b33y34; r34y35, r34b35, y34b35; y35r36,

y35b36, b35r36, b35y36; r36y37, y36r37, b36r37, b36y37; r37y38, r37b38,

y37r38, y37b38; r38y39, r38b39, y38b39, b38y39; y39r40, y39b40, b39r40,

b39y40; r40y41, y40r41, b40r41, b40y41; r41y42, y41r42; r42y43, r42b43,
y42b43; y43r44, y43b44, b43r44, b43y44; r44y45, y44r45, b44r45, b44y45;

r45b46, y45b46; b46r47; b46y47; r47b48, y47r48, y47b48; r48y49, b48r49,

b48y49; r49y50, y49r50; r50y51, r50b51, y50r51, y50b51; r51y52, y51r52,

b51r52, b51y52; r52y53, r52b53, y52r53, y52b53; r53b54, y53r54, y53b54,

b53r54; r54y55, b54r55, b54y55; r55y56, y55r56; r56b57, y56r57, y56b57;

r57b58, b57r58; r58y59, b58r59, b58y59; r59b60, y59r60, y59b60; and r60y61,

b60y61.
All the oligonucleotides used in this article were synthesized by

Sangon Biotech (Shanghai) Co., Ltd.

4.3. Implementing the initial solution space of each subgraph

Here, we use the subgraph G1 as an example to show how to
construct the initial solution space; the result is shown in
Fig. 8(a). The steps and reaction systems were as follows:

Step 1: Phosphorylation. DNA sequences xi, where v i 2 VðG1Þ,
xi 2 Cv , and i ¼ 1;2; . . . ;16, were phosphorylated at the 50 end by
T4PNK. Ina sterile0.2 mLamplification tube, thephosphonated reac-
tion componentswere: 16.5 lL of oligonucleotide (0.5 lL for each xi;
v i 2 VðG1Þ, xi 2 Cv , i ¼ 1;2; . . . ;16), 3 lL of T4 PNK, 3 lL of buffer
forT4 PNK, 5 lL of adenosine triphosphate (ATP) (10 mmol�L�1),
and 2.5 lL of double-distilledwater. The total volume of themixture
was 30 lL. The mixture was incubated at 37 �C for an hour.

Step 2: Annealing. In a sterile 0.2 mL amplification tube, the
annealing reaction components were: 30 lL of the phosphorylated
product, 23 lL of probes (0.5 lL for each probe), 3 lL of buffer for
T4 PNK, and 4 lL of double-distilled water for a total volume of
60 lL. The mixture was incubated at 94 �C for 5 min and at 50 �C
for 10 min, and was then slowly cooled to room temperature.

Step 3: Ligation. In a sterile 0.2 mL amplification tube, the liga-
tion reaction components were: 6 lL of the annealing product, 2
lL of T4 DNA ligase, and 2 lL of buffer for T4 DNA ligase. The total
volume of the mixture was 10 lL. The mixture was incubated at
16 �C overnight.

Step 4: PCR amplification. The ligation product was amplified

by the primer pairs hr1; b16i. In a sterile 0.2 mL amplification tube,
the PCR reaction components were: 1 lL of the template, 2 lL of
the primer pairs (1 lL of each), 4 lL of dNTP Mix (2.5 mmol�L�1

for each), 0.5 lL of the Taq polymerase, and 5 lL of the buffer for
the Taq polymerase, in a total volume of 30 lL. The reaction condi-
tions were: 94 �C for 5 min; then 94 �C for 30 s, 54 �C for 30 s, and
72 �C for 45 s for 35 cycles; then 72 �C for 10 min.

After PCR, 4% agarose gel electrophoresis was used to display
the products, and the 320 bp bands were cut and purified with a
Gel Extraction Kit (U-gene) in a final volume of 50 lL. The DNA
strands representing the possible solutions of subgraph G1 were
denoted by SðG1Þ, where S(G1) = {x1x2. . .x16}.

These steps were also used to construct the initial solution
space of G2, G3, and G4; the results are shown in Fig. 8(b–d). These
results were denoted by SðG2Þ, SðG3Þ, and SðG4Þ, respectively,
where S(G2) = {x16x17. . .x31}, S(G3) = {x31x32. . .x46}, and S(G4) =
{x46x47. . .x61}, with xi 2 Cv i

and v i 2 VðGÞ.
PCR was also used to test the completeness of each initial solu-

tion space of each subgraph. Taking SðG1Þ as an example, a 50-fold
dilution of the initial solution space SðG1Þ was amplified with
primer pairs: hx1; xii, where i ¼ 1;2; . . . ;16: These products are
shown in Fig. 8(e,f).
4.4. Deleting false solutions of the subgraph

In this section, we describe how to delete false solutions of the
subgraph. PCR is also used to delete false solutions. According to
the different walks, PCR operations were classified into three basic
types:

Fig. 8. Construction of the initial solution space. M, M1, and M2 are the molecular weight markers UX174-Hae III, 20 bp ladder, and 50 bp ladder, respectively. The 320 bp
DNA bands of (a), (b), (c), and (d) are S(G1), S(G2)� S(G3), and S(G4), respectively. (e) and (f) are the results of analysis of S(G1). Lanes 1–17 in (e) correspond to the primer pairs
hr1; y2i, hr1; b2i, hr1; r3i, hr1; y3i, hr1; r4i, hr1; y4i, hr1; y5i, hr1; b5i, hr1; y6i, hr1; b6i, hr1; r7i, hr1; y7i, hr1; r8i, hr1; y8i, hr1; r9i, hr1; y9i, and hr1; b9i, respectively. Lanes 1–15 in (f)
correspond to the primer pairs hr1; r10i, hr1; y10i, hr1; b10i, hr1; r11i, hr1; y11i, hr1; r12i, hr1; y12i, hr1; r13i, hr1; y13i, hr1; b13i, hr1; y14i, hr1; b14i, hr1; r15i, hr1; y15i, and hr1; b16i,
respectively.

70 J. Xu et al. / Engineering 4 (2018) 61–77
The first type was designed for the walk or circle, and parallel
PCR was applied to find the true solutions. We give the steps using
a path P = 16–20–22–26–30 of subgraph G2 as an example.

First, the 50-fold dilutions of SðG2Þ were amplified by different
primer pairs: hb16; r20i, hb16; y20i, hr20; y22i, hy20; r22i, hr22; y26i,
hy22; r26i, hr26; y30i, hr26; b30i, hy26; b30i, hy30; r31i, and hb30; r31i. After
PCR, five different DNA segments with different lengths were
obtained. The DNA segments of 100 bp ðhb16; x20iÞ, 60 bp
ðhx20; x22iÞ, 100 bp ðhx22; x26iÞ, 100 bp ðhx26; x30iÞ, and 40 bp
ðhx30; x31iÞ are shown in Fig. 9(a) and (b), where xi 2 Cv i

, i = 16,
17, . . ., 31. Lane 5 in Fig. 9(a) shows no product with the primer
pair hr22; y26i, which means that there is no DNA strand with r22
and y26 in the initial solution space. This is the first PCR.

Next, the second PCR was run using different templates and dif-
ferent primer pairs, and the five DNA segments were combined to
form three segments. Here Ti (i = 1, 2, 3) is used to represent the
different templates. T1 represents the mixtures of PCR products
from Lanes 1 and 3 in Fig. 9, T2 represents the mixtures from Lanes
1 and 4 in Fig. 9(b) as the template, and T3 represents the mixtures
from Lanes 2 and 5 in Fig. 9(b). With the primer pairs hb16; y22i,
hr26; r31i, and hr26; r31i, three segments with 140 bp, 120 bp, and
120 bp, respectively, were acquired. The results are shown in
Fig. 9(c).

Subsequently, the third PCR was run, and a 220 bp band was
acquired with the primer pair hb16; r26i by using the mixtures of
PCR products from Lane 6 in Fig. 9(a) and Lane 1 in Fig. 9(c). The
result is shown in Fig. 9(d).

Finally, the mixtures from Lane 1 in Fig. 9(d) and Lane 2 in
Fig. 9(c) and the mixtures from Lane 1 in Fig. 9(d) and Lane 3 in
Fig. 9(c) were amplified separately by primer pair hb16; r31i, and
two different 320 bp bands were acquired (see Fig. 9(e)). Thus, at
the end of the PCR operations, two sets consisting of 320 bp DNA
sequences were obtained. In these sets, the coloring of vertices
20, 22, 26, and 30 were ascertained as follows: b16r20y22r26y30r31
and b16r20y22r26b30r31. These steps are shown in Fig. 9(f).

The second type was designed for the single edge whose two
end vertices colors were undetermined. Here, we take e ¼ f4;8g
in subgraph G1 as an example.

Fig. 9. PCR results. (a) Lane 1 to Lane 6 correspond to primer pairs hb16; r20i, hb16; y20i, hr20; y22i, hy20; r22i, hr22 ; y26i, and hy22; r26i, respectively; (b) Lane 1 to Lane 5 correspond
to primer pairs hr26; y30i, hr26; b30i, hy26; b30i, hy30; r31i, and hb30; r31i, respectively; (c) Lane 1 to Lane 3 correspond to primer pairs hb16 ; y22i, hr26; r31i, and hr26; r31i, respectively;
(d) Lane 1 and Lane 2 correspond to primer pair hb16; r26i; (e) Lanes 1 and 2 correspond to primer pair hb16 ; r31i; (f) an illustration of parallel PCR operations.

J. Xu et al. / Engineering 4 (2018) 61–77 71
At first, the PCR products of the third cycle of subgraph G1 were

amplified by the primer pairs hr1; r4i, hr4; y8i, hy8; b16i, hr1; y4i,
hy4; r8i, and hr8; b16i, and the 320 bp full-length DNA strands were
divided into sequences of 80 bp ðhr1; x4iÞ, 100 bp ðhx4; x8iÞ, and

180 bp ðhx8; b16iÞ, respectively, where ðxi ¼ Cv i
; i ¼ 1;2; . . . ;16Þ.

The results are shown in Fig. 10(a); there is no product for hy4; r8i.
Next, PCR was run with primer pair hr1; y8i, using the mixtures

of PCR products from Lanes 1 and 3 in Fig. 10(a) as a template, and
a 160 bp band was acquired (see Fig. 10(b)).

At last, the mixtures of PCR products from Lane 5 in Fig. 10(a)

and Lane 1 in Fig. 10(b) were amplified by primer pair hr1; b16i,
and a 320 bp band was acquired. To test the color of v4 and v8,
the 320 bp band was amplified by primer pairs hr1; r8i, hr4; r8i,
hy4; r8i, and hy4; y8i, respectively. No product was obtained. Thus,
the colors of vertices 4 and 8 were determined as r4 and y8.

The third type was designed to check the edges whose two end
vertices colors had been determined. Here, e ¼ f39;42g was used
to illustrate the operation.

After finishing all PCRs of C = 34–38–42–46–34 and the first PCR
of C = 34–38–42–46–34 of subgraph G3, there were a total of six
solutions (marked as (1) to (6) in Fig. 11), and the color of v39
and v42 could be determined as b39, y39, r42, and y42. In these cases,
only the DNA strands with y39 and y42 are false solutions. To delete
the false solutions, these six solutions were amplified by primer
pair hy39; y42i separately; only the false solutions would produce
80 bp bands after PCR. The results are shown in Fig. 11(a), and
the principle is shown in Fig. 11(b).

Fig. 10. PCR results for e ¼ f4;8g. (a) Lanes 1 and 2, 3 and 4, and 5 and 6 correspond to primer pairs hr1; r4i, hr4; y8i, and hy8; b16i; (b) Lanes 1 and 2 correspond to primer pair
hr1; y8i; (c) Lane 1 corresponds to primer pair hr1; b16i.

72 J. Xu et al. / Engineering 4 (2018) 61–77
4.5. Finding the true solution of graph G

To find the solutions of graph G; the solution spaces of the sub-
graphs must be combined, and then the false solutions must be
deleted according to the operations described in Section 4.4.

First, the solution spaces mixtures of subgraphs G1 and G2 were
amplified by primer pair hr1; r31i. The PCR results were DNA strands
with a 620 bp band, which represented all possible three-colorings
of G½V1 [V2�. Meanwhile, false solutions might also exist in this
space, because there were five edges connecting G1 and G2.
After deleting the false solutions, four true solutions of G½V1 [V2�
Fig. 11. PCR results for e ¼ f39;42g. (a) All lanes correspond to primer pair
hy39; y42i: Lanes 1 and 2 correspond to solution (1), Lanes 3 and 4 correspond to
solution (2), Lanes 5 and 6 correspond to solution (3), Lanes 7 and 8 correspond to
solution (4), Lanes 9 and 10 correspond to solution (5), and Lanes 11 and 12
correspond to solution (6); (b) an illustration of deleting false solutions; ‘‘n” stands
for deleting false solutions.
(X1–X4) were obtained (shown below). The results are shown in
Fig. 12(a) and (b).

X1 ¼ r1b2y3r4y5b6r7y8r9b10y11r12b13y14r15b16r17y18b19r20b21y22r23
b24y25r26y27b28r29y30r31

X2 ¼ r1b2y3r4y5b6r7y8r9b10y11r12b13y14r15b16r17b18y19r20b21y22r23
b24y25r26y27b28r29y30r31

X3 ¼ r1b2y3r4y5b6r7y8b9y10r11y12r13b14y15b16r17y18b19r20b21y22r23
b24y25r26y27b28r29y30r31

X4 ¼ r1b2y3r4y5b6r7y8b9y10r11y12r13b14y15b16r17b18y19r20b21y22r23
b24y25r26y27b28r29y30r31

Similarly, the solution spaces mixtures of subgraphs G3 and G4

were amplified by primer pair hr31; y61i to obtain the possible solu-
tions of G½V3 [V4�. After deleting the false solutions, six true solu-
tions Y1–Y6 remained (shown below). The results are shown in
Fig. 12(c)–(e).

Y1 ¼ r31b32y33r34b35y36r37b38y39r40y41r42b43y44r45b46y47b48r49y50b51

r52y53b54r55y56r57b58y59r60y61

Y2 ¼ r31b32y33r34b35y36r37b38y39r40y41r42b43y44r45b46r47b48r49y50b51

r52y53b54r55y56r57b58y59b60y61

Y3 ¼ r31b32y33r34b35y36r37b38y39r40y41r42b43y44r45b46r47b48r49y50b51

r52y53b54r55y56r57b58y59b60y61

Y4 ¼ r31b32y33r34b35y36r37b38y39b40y41r42b43y44r45b46y47b48r49y50b51

r52y53b54r55y56r57b58y59r60y61

Y5 ¼ r31b32y33r34b35y36r37b38y39b40y41r42b43y44r45b46r47b48r49y50b51

r52y53b54r55y56r57b58y59b60y61

Y6 ¼ r31b32y33r34b35y36r37b38y39b40y41r42b43y44r45b46r47b48r49y50b51

r52y53b54r55y56r57b58y59b60y61

Finally, the solution space of subgraphs G½V1 [V2� and
G½V3 [V4� were combined by primer pair hr1; y61i. This primer pair
only resulted in a band corresponding to 1220 bp. After deleting
false solutions, eight true solutions Z1–Z8 were obtained (shown
below). The results are shown in Fig. 13.

Fig. 12. The solutions for G½V1 [V2�. (a) Lanes 1 and 2 correspond to solutions X1 and X2, respectively; (b) Lanes 1 and 2 correspond to solution X3, and Lanes 3 and 4
correspond to solution X4; (c) Lanes 1 and 2 correspond to solution Y1, and Lane 3 corresponds to solution Y2; (d) Lane 1 corresponds to solution Y3, and Lane 2 corresponds to
solution Y4; (e) Lane 1 corresponds to solution Y5, Lane 2 corresponds to solution Y6, Lane 3 corresponds to a positive control, and Lanes 4 and 5 correspond non-solution. All
the solutions denoted as Yj , where j ¼ 1;2;3;4;5;6, correspond to primer pair hr31; y61i.

Fig. 13. The solutions for G[V3[V4]. M3 is the DNA molecular weight marker 150 bp
ladder. Lane 1 to Lane 8 correspond to solutions Z1 to Z8, respectively.

J. Xu et al. / Engineering 4 (2018) 61–77 73
Z1 ¼ r1b2y3r4y5b6r7y8r9b10y11r12b13y14r15b16r17y18b19r20b21y22r23
b24y25r26y27b28r29y30r31b32y33r34b35y36r37b38y39r40y41r42
b43y44r45b46y47b48r49y50b51r52y53b54r55y56r57b58y59r60y61

Z2 ¼ r1b2y3r4y5b6r7y8r9b10y11r12b13y14r15b16r17y18b19r20b21y22r23
b24y25r26y27b28r29y30r31b32y33r34b35y36r37b38y39r40y41r42
b43y44r45b46y47b48r49y50b51r52y53b54r55y56r57b58y59b60y61

Z3 ¼ r1b2y3r4y5b6r7y8r9b10y11r12b13y14r15b16r17y18b19r20b21y22r23
b24y25r26y27b28r29y30r31b32y33r34b35y36r37b38y39b40y41r42
b43y44r45b46y47b48r49y50b51r52y53b54r55y56r57b58y59r60y61

Z4 ¼ r1b2y3r4y5b6r7y8r9b10y11r12b13y14r15b16r17y18b19r20b21y22r23
b24y25r26y27b28r29y30r31b32y33r34b35y36r37b38y39b40y41r42
b43y44r45b46y47b48r49y50b51r52y53b54r55y56r57b58y59b60y61
Z5 ¼ r1b2y3r4y5b6r7y8r9b10y11r12b13y14r15b16r17b18y19r20b21y22r23
b24y25r26y27b28r29y30r31b32y33r34b35y36r37b38y39r40y41r42
b43y44r45b46y47b48r49y50b51r52y53b54r55y56r57b58y59r60y61
Z6 ¼ r1b2y3r4y5b6r7y8r9b10y11r12b13y14r15b16r17b18y19r20b21y22r23
b24y25r26y27b28r29y30r31b32y33r34b35y36r37b38y39r40y41r42
b43y44r45b46y47b48r49y50b51r52y53b54r55y56r57b58y59b60y61
Z7 ¼ r1b2y3r4y5b6r7y8r9b10y11r12b13y14r15b16r17b18y19r20b21y22r23
b24y25r26y27b28r29y30r31b32y33r34b35y36r37b38y39b40y41r42
b43y44r45b46y47b48r49y50b51r52y53b54r55y56r57b58y59r60y61
Z8 ¼ r1b2y3r4y5b6r7y8r9b10y11r12b13y14r15b16r17b18y19r20b21y22r23
b24y25r26y27b28r29y30r31b32y33r34b35y36r37b38y39b40y41r42
b43y44r45b46y47b48r49y50b51r52y53b54r55y56r57b58y59b60y61

All eight solutions Z1–Z8 were purified and sequenced by Beijing
AuGCT Biology Company. The sequences were analyzed by Gene
Tools and improved to be the true solutions of graph G.
5. Complexity analysis

In this section, we analyze the complexity of this DNA comput-
ing model in two aspects: the complexity of the initial solution
space and the complexity of the experiments. We provide a calcu-
lation formula to estimate the amount of initial solution space for
typical and for worst cases.

74 J. Xu et al. / Engineering 4 (2018) 61–77
5.1. Calculation of the walks in a given graph

To illustrate the complexity of the initial solution space, we first
introduce a formula, which can be used to calculate the number of
the walks between any two vertices.

Lemma 5.1 [28]: Let G be a graph with n vertices and V(G) = {v1,
v2, . . ., vn}. A is the adjacent matrix of G. The number of walks of
length l inG, from vi to vj, is the entry in position (i, j) of thematrix Al.

5.2. Complexity analysis of decreasing the initial solution space

In previous DNA computing models for solving NP-complete
problems, a large number of DNA molecules were frequently used
to encode and enumerate an infinite amount of data. However,
those models rarely considered decreasing false solutions by con-
structing the initial solution space; rather, they used the enumer-
ating method. In fact, this enumerating idea does not work for
large-scale problems for two reasons. First, with an increase of
problem scale, the number of DNA molecules becomes too large
to obtain. Second, even if the number of DNA molecules can be
designed, the experiments will be too difficult to implement due
to the larger size and greater number of molecules. Thus, it is nec-
essary to find more efficient methods to decrease the initial solu-
tion space when designing a DNA computing model to solve NP
problems. In this article, we designed a DNA computing model
for the coloring problem by using an optimization idea to construct
an initial solution space, rather than by enumerating.

Theorem 5.2: Suppose that G is a graph with |V(G)| = n and G1 is
its subgraph, as proposed by Section 3.2, where V(G) = {v1, v2, . . .,
vn}, with the bridge vertices v1 and vt. Let B(G1) be the probe graph
of G1. Then the number of DNA sequences representing all possible
coloring solutions in the initial solution space to G1 is equal to the
number of paths connecting the bridge vertices v1 and vt with
length t � 1 in B(G1), denoted by Np(v1, vt), which is given by the
following formula:
Npðv1;v tÞ ¼ At�1½BðG1Þ�ð1; t � 1Þ ð5Þ

Proof: The vertex xi in 99:9997% represents a coloring of the
vertex v i in G1 by the definition of BðG1Þ. The edge
fxi; ziþ1g 2 BðG1Þ represents the probe between xi and ziþ1. That is,
when the color of v i is x, the color of v iþ1 can be chosen as z, where
x; z 2 fr; y; bg. Consequently, each path from vertex r1 to vertex bt

denotes one possible coloring of subgraph G1. Furthermore, all
the paths between r1 and bt in BðG1Þ represent all the possible solu-
tions of the initial solution space.

Considering the structure of the probe graph BðG1Þ, we divide
VðBðG1ÞÞ into v t parts, where the vertex with subscript i is the ith
part. It is concluded that there must at least exist an edge connect-
ing the ith part and the (i + 1)th part by the definition of a probe
graph. Thus, the length of the paths between r1 and bt in BðG1Þ is
only t � 1. And each walk from r1 to bt is just the path between
r1 and bt . Thus, the theorem is proved by Lemma 5.1. h

Corollary 5.3: The number of DNA strands in initial solution
spaces S(G1), S(G2), S(G3), and S(G4) of the subgraphs G1, G2, G3,
and G4 shown in Fig. 4 are 89, 81, 412, and 151, respectively. The
corresponding percentage of DNA strands deleted in the enumer-
able initial solution spaces are 99.9998%, 99.9998%, 99.999%, and
99.9997%, respectively.

Proof: Notice that vertices v1 and v16 are the bridge vertices of
subgraph G1. Thus, the number of DNA strands in S(G1) is N33(r1,
b16), which is the number of paths with length 15 from vertex r1
to b16 in B1 (see Fig. 7) by Theorem 5.2.

The adjacent matrix AðB1Þ of B1 is

J. Xu et al. / Engineering 4 (2018) 61–77 75
The correspondence between the vertices of A(B1) and B1 is

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
r1 y2 b2 r3 y3 r4 y4 y5 b5 y6 b6 r7 y7 r8 y8 r9 y9
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
b9 r10 y10 b10 r11 y11 r12 y12 r13 y13 b13 y14 b14 r15 y15 b16

0
BBB@

1
CCCA

According to Lemma 5.1, we have AðB1Þ15ð1;33Þ ¼ 89, and
89

43046721 	 0:000002 ¼ 0:0002%. The result shows that 99:9998%
of the false solutions are deleted when constructing the initial
solution space SðG1Þ.

Similarly, we have AðB2Þ15ð1;32Þ ¼ 81, and 81
43046721 	 0:00000188

¼ 0:000188% for subgraph G2; AðB3Þ15ð1;35Þ ¼ 412, and 412
43046721 	

0:0000096¼ 0:00096% for subgraph G3; and AðB4Þ15ð1;32Þ ¼ 151,
and 151

43046721 	 0:0000035¼ 0:00035% for subgraph G4, respectively.
The results show that 99:9998%, 99:999%, and 99:9997% of the
false solutions were deleted when constructing the initial solution
spaces SðG2Þ, SðG3Þ, and SðG4Þ, respectively. h

5.3. Reducing operation complexity by parallel PCR technology

In our experiment, false solutions are deleted by designed
parallel PCR operation on the forward paths (see Section 3.7). In
this way, the bio-operation times are greatly reduced. The
bio-operation complexity is analyzed in this section.

Let P = vi0vi1. . .vim with jVðPÞj ¼ mþ 1 be a forward path in
subgraph G1 with bridge vertices v1 and v t . Then we must consider
the relationships between the two bridge vertices and path
P = vi0vi1. . .vim with three cases when we design corresponding
parallel PCR operation:

Case 1: There are no bridge vertices in VðPÞ. That is, v i0–v1 and
v im–v t . For this case, we need to add the two bridge vertices so as
to analyze the advantages of the parallel PCR operations (see
Fig. 14(a)).

Case 2: There is one bridge vertex in VðPÞ. That is, v i0 ¼ v1 but
v im–v t , or v i0–v1 but v im ¼ v t . For this case, we need to add the
one bridge vertex v1 or v t (see Fig. 14(b)).

Case 3: There are two bridge vertices in VðPÞ. That is, v i0 ¼ v1

and v im ¼ v t . For this case, we need only to consider the ordering
vertices in path P (see Fig. 14(c)).

Since the color of the bridge vertex v1 (or v t) is fixed in advance,
its adjacent vertices in Cases 2 and 3 are taken as the other colors
aside from the color of v1 (or v t). Since there are three cases shown
Fig. 14. Three cases between the two bridge vertices and a forward path.
(a) v i0 – v1 and v im – v t; (b) v i0 ¼ v1 but v im – v t , or v i0 – v1 but v im ¼ v t;
(c) v i0 ¼ v1 and v im ¼ v t .
in Fig. 14, we will only discuses Case 1, because the other two cases
can be treated as special cases of Case 1. Let P belongs to Case 1,
then P0 ¼ P � fv1;v i0g or P0 ¼ P � fv im;v tg should belongs to Case
2, and P00 ¼ P � fv1;v i0g � fv im;v tg will be Case 3.

Next, let us discuss the parallel PCR method. First, we determine
the number and sequence of the vertices for the forward path
P = vi0vi1. . .vim using the approach given in Fig. 14. Next, we
perform the PCR operations. In practice, we do several times of
PCR to fulfill one deleting false solutions operation. We found that
the times of PCR operation are only relevant to the number of
vertices or edges. Taking the first case above as an example, it is
necessary to amplify the strands with the primer pairs hv1;v i0i,
hv i0;v ili; . . . hv iðm�1Þ;v imi, and hv im;v ti in the first PCR operation.
The second PCR operation is designed to connect the consecutive
two segments of the results of the previous PCR operation. The fol-
lowing PCR processes perform similar operations to the second PCR
operation. In Fig. 15, we refer to cases with five vertices (a path
with two edges) and six vertices (a path with three edges) as
examples in order to illustrate the process of parallel PCR, where
the edges mean how we do the PCR operation to connect the
DNA segments to get a completed DNA sequence.

It is concluded from Fig. 15 that the number of PCR operation is
3 for the case of the path with two edges, and for the case of the
path with six edges the number of PCR operation is 4. Thus, we
have Theorem 5.4.

Theorem 5.4: Suppose that P is the forward path of a subgraph

with x edges. If x satisfies 2l�1 < x 6 2l, we define hxi ¼ 2l. Let the
number of PCR operation be represented as PCRðxÞ. Then, it can
be concluded that

PCRðxÞ ¼ 1þ log2hxþ 2i; where x P 1 ð6Þ

Proof: First, we consider the case x + 2 = 2l. Suppose that the
number of edges in path P is x. That is, the number of vertices in
path P is x + 1. We already analyze the three cases between the
two bridge vertices in a forward path in Fig. 14, and Cases 2 and
3 are the special cased of Case 1. So without loss of generality,
we focus our attention on Case 1.

Since there are no bridge vertices in path P, it is necessary to
increase two bridge vertices according to the requirements of the
PCR operations, such that the number of vertices increases to
x + 3. Then, we obtain the following equation:

xþ 3 ¼ 2l þ 1
Fig. 15. An illustration of parallel PCR technology.

Fig. 16. A comparison between parallel PCR and general PCR operations for a single
edge.

76 J. Xu et al. / Engineering 4 (2018) 61–77
As a result, the number of primer pairs of the first PCR can be
concluded as shown below:

ðxþ 3Þ � 1 ¼ xþ 2 ¼ 2l

Following the above operations, the primer pair number in the

second PCR is 2l�1. In general, the primer number in the lth PCR is
concluded to be:

PCRðxÞ ¼ 2l�ðl�1Þ ¼ 2

Thus, the PCR can be accomplished in the (l + 1)th time. In other
words, the number of PCR operation required are l + 1 when
x + 2 = 2l. Then, we obtain the following mathematical relation:

PCRðxÞ ¼ lþ 1 ¼ 1þ log22
l ¼ 1þ log2h2li ¼ 1þ log2hxþ 2i

Similarly, if x + 2 = 2l+1, then the number of PCR operation sat-
isfy the formula as follows:

PCRðxÞ ¼ lþ 2 ¼ 1þ log2h2lþ1i ¼ 1þ log2hxþ 2i
Here, we demonstrate the case x + 2 = 2l + 1:
As shown above, the number of vertices in path P is x + 3 by

increasing two bridge vertices. Thus, when x + 2 = 2l + 1, there are
2l + 2 vertices. The number of primer pairs in the first PCR is 2l + 1,
as induced by the following formula: (x + 3) � 1 = x + 2 = 2l + 1.

The number of primer pairs in the second PCR is then 2l�1 + 1.
Similarly, the number of primer pairs in the (l + 1)th PCR is 2.
The (l + 2)th PCR can be completed.

On the other hand, we can obtain the number of the PCR oper-
ation as follows:

PCRðxÞ ¼ lþ 2 ¼ 1þ ðlþ 1Þ ¼ 1þ log22
lþ1 ¼ 1þ log2h2l þ 1i

¼ 1þ log2hxþ 2i

Thus, the conclusion above is verified when xþ 2 ¼ 2l þ 1.

For 2 6 y < 2l, the number of PCR operation when xþ 2 ¼ 2l þ y

is more than that of the case xþ 2 ¼ 2lþ1. The number of PCR oper-
ation for these two cases above is lþ 2. Thus, the conclusion holds

when 2 6 y < 2l and xþ 2 ¼ 2l þ y. Consequently, Theorem 5.4 is
demonstrated. h

Theorem 5.4 fully shows the relations between the length x of
forward path P and the number of the PCR operation. Of course,
the number can be reduced by parallel PCR operations, which will
greatly accelerate the computation speed. We can now see the
advantages of parallel PCR operations, as shown in Table 2 and
Fig. 16.

Corollary 5.5: Let P be the forward path in a graph G1 with x
edges. It can be induced by using Theorem 5.4 that

lim
x!1

log2hxþ 2i þ 1
3x

¼ 0

Proof: Let x + 2 = 2l + y, where 1
 y
 2l. Then, we have

hxþ 2i ¼ 2lþ1 ¼ 2ð2l þ y� yÞ < 2ð2l þ yÞ
Table 2
A comparison between parallel PCR operations and general PCR operations for a single ed

x 1 2 3 4 5 6 7

PCR(x) 3 3 4 4 4 4 5
3x 3 6 9 12 15 18 21

x 16 17 18 19 20 21 22

PCR(x) 6 6 6 6 6 6 6
3x 48 51 54 57 60 63 66

x is the number of edges, and 3x and PCR(x) denote the number of operation of general
In addition, since y is less than 2l, then it is induced that 2l+1 >
y + 2l. Consequently, the following consecutive inequalities hold:

yþ 2l < 2lþ1 < 2ð2l þ yÞ

That is, x satisfies the relation below:

xþ 2 < hxþ 2i < 2ðxþ 2Þ
Then, we obtain

log2ðxþ 2Þ < log2hxþ 2i < log22ðxþ 2Þ; and

1þ log2ðxþ 2Þ
3x

<
1þ log2hxþ 2i

3x
<

1þ log22ðxþ 2Þ
3x

On the basis of L’Hospital’s rule, we obtain

lim
a!1

log2ðxþ 2Þ þ 1
3x

¼ lim
a!1

log22ðxþ 2Þ þ 1
3x

¼ 0

Therefore, the formula lim
x!1

log2hxþ2iþ1
3x ¼ 0 is true. h

6. Conclusions

Since shortly after the discovery of the double helix structure of
DNA, the idea of using DNA molecules to process information has
been a dream, one that originated from Feynman’s concept of
constructing submicroscopic computers [1]. This dream was
ge.

8 9 10 11 12 13 14 15

5 5 5 5 5 5 5 6
24 27 30 33 36 39 42 45

23 24 25 26 27 28 29 30

6 6 6 6 6 6 6 6
69 72 75 78 81 84 87 90

PCR and parallel PCR for a single edge, respectively.

J. Xu et al. / Engineering 4 (2018) 61–77 77
ultimately fulfilled by Adleman in 1994, when he established a
DNA computing model for a Hamiltonian graph with seven
vertices. These works greatly contributed to the development of
DNA computing.

The success of our DNA computing model not only demon-
strates its huge computational capability, but also provides a
seemingly feasible method to solve the exponential explosion
problem, which may be the biggest bottleneck preventing DNA
computing from solving larger-scale NP problems. In this paper,
a graph vertex coloring problem with a computing complexity
of O(359) is solved by using the advantages of the DNA computing
model: the construction of an un-enumerating initial solution
space, the division and combination of subgraphs, and parallel
bio-operation.

By dividing subgraphs, reducing the vertex colors without losing
solutions, and ordering the vertices in subgraphs, the exponential
explosion problem is effectively avoided. According to Lemma 5.1,
the initial solution space of each subgraph is 89, 81, 412, and 151,
respectively, all of which are much lower than 316 (the worst com-
plexity). Therefore, the values of DNA sequences in the un-
enumerating initial solution space are 99.9998%, 99.9998%,
99.999%, and 99.9997% lower than those in an enumerating initial
solution space.

In this model, we also improve the computing efficiency by
dividing the graph into four subgraphs and simultaneously
deleting the false solutions of these subgraphs. After obtaining
the solutions of each subgraph, the true solutions are found by
combining the subgraphs. It is possible that the ability of this
model to solve the graph vertex coloring problem will reach
100 vertices.

In this model, false solutions are deleted according to the path
rather than the edge. Thus, all edges in one path are dealt with at
the same time. In this way, the number of PCR operation required
decreases. The efficiency of this DNA computing model is greatly
improved by a significant innovation: the ‘‘parallel deleting
method.”

In general, many researchers use PCR for amplification with
only two primers and one template, because they think that PCR
is not very reliable with many templates. However, in this model,
we use PCR to amplify all templates in a test-tube. In order to
obtain reliable results, the primer pairs are strictly designed
according to the constraints of PCR, and the reaction conditions
and the concentration of the components are optimized for each
PCR. Only the bands representing the specific amplification are
cut and purified for the next operation. In addition, contrast tests
are implemented to avoid false positives and false negatives in
the experiments. The sequencing shows that the results of the
experiments are reliable. Because of its reliability and its ability
to reduce the solution space, we assert that this DNA computing
model can be used to solve larger-size problems, and that DNA
molecular tools can be used to carry out larger-scale NP problems.
In future, it may be possible to use DNA computing for certain
practical engineering problems.

Acknowledgements

The authors are grateful for the support from the National
Natural Science Foundation of China (61632002, 61379059, and
61572046).
Compliance with ethics guidelines

Jin Xu, Xiaoli Qiang, Kai Zhang, Cheng Zhang, and Jing Yang
declare that they have no conflict of interest or financial conflicts
to disclose.
References

[1] Feynman RP. Minaturization. New York: Reinhold; 1961.
[2] Adleman LM. Molecular computation of solutions to combinatorial problems.

Science 1994;266(5187):1021–4.
[3] Lipton RJ. DNA solution of hard computational problems. Science 1995;268

(5210):542–5.
[4] Ouyang Q, Kaplan PD, Liu S, Libchaber A. DNA solution of the maximal clique

problem. Science 1997;278(5337):446–9.
[5] Sakamoto K, Gouzu H, Komiya K, Kiga D, Yokoyama S, Yokomori T, et al.

Molecular computation by DNA hairpin formation. Science 2000;288
(5469):1223–6.

[6] Rothemund PWK. A DNA and restriction enzyme implementation of turing
machines. In: Lipton RJ, Baum EB, editors. DNA based
computers. Providence: American Mathematical Society; 1995. p. 75–119.

[7] Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E. Programmable
and autonomous computing machine made of biomolecules. Nature 2001;414
(6862):430–4.

[8] Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E. An autonomous molecular
computer for logical control of gene expression. Nature 2004;429
(6990):423–9.

[9] Winfree E. Algorithmic self-assembly of DNA [dissertation]. Pasadena:
California Institute of Technology; 1998.

[10] Braich RS, Chelyapov N, Johnson C, Rothemund PW, Adleman L. Solution of a
20-variable 3-SAT problem on a DNA computer. Science 2002;296
(5567):499–502.

[11] Berge C, Minieka E. Graphs and hypergraphs. New York: Elsevier Science
Publishing Co, Inc.; 1973.

[12] Briggs P, Cooper KD, Dennedy K, Torczon L. Coloring heuristics for register
allocation. In: Proceedings of the ACM SIGPLAN 1989 conference on
programming language design and implementation. 1989 Jun 19–23;
Portland, OR, USA; 1989. p. 275–84.

[13] Chaitin GJ. Register allocation & spilling via graph coloring. In: Proceedings of
the ACM SIGPLAN 1982 conference on compiler construction; 1982 Jun 23–25;
Boston, MA, USA; 1982. p. 98–105.

[14] Johnson DS. Worst case behavior of graph coloring algorithm. In: Proceedings
of the 5th southeastern conference on combinatorics, graph theory and
computing; 1974 Feb 25–Mar 1; Boca Raton, FL, USA; 1974. p. 513–27.

[15] Blum A. New approximation algorithms for graph coloring. J Assoc Comput
Mach 1994;41(3):470–516.

[16] Karger D, Motwani R, Sudan M. Approximate graph coloring by semi-definite
programming. J Assoc Comput Mach 1998;45(2):246–65.

[17] Schiermeyer I. Deciding 3-colorability in less than O(1.415n) steps. In:
Proceedings of the 19th International Workshop on Graph-Theoretic
Concepts in Computer Science; 1993 Jun 16–18; Utrecht, The Netherlands.
London: Springer; 1993. p. 177–88.

[18] Beigel R, Eppstein D. 3-coloring in time O(1.3289n). J Algorithms 2005;54
(2):168–204.

[19] Jonoska N, Karl SA, Saito M. Three dimensional DNA structures in computing.
Biosystems 1999;52(1–3):143–53.

[20] Jonoska N, Sa-Ardyen P, Seeman NC. Computation by self-assembly of DNA
graphs. Genet Program Evolvable Mach 2003;4(2):123–37.

[21] Sa-Ardyen P, Jonoska N, Seeman NC. Self-assembling DNA graphs. Nat Comput
2003;2(4):427–38.

[22] Liu W, Zhang F, Xu J. A DNA algorithm for the graph coloring problem. J Chem
Inf Comput Sci 2002;42(5):1176–8.

[23] Gao L, Xu J. A DNA algorithm for graph vertex coloring problem. Acta
Electronic Sinica 2003;31:494–6.

[24] Xu J, Qiang X, Fang G, Zhou K. A DNA computer model for solving vertex
coloring problem. Chin Sci Bull 2006;51(20):2541–9.

[25] Garey MR, Johnson DS. Computers and intractability: A guide to the theory of
NP-completeness. New York: W. H. Freeman & Co.; 1979.

[26] Bondy JA, Murty USR. Graph theory with applications. New York: American
Elsevier Publishing Company, Inc.; 1976.

[27] Zhang K, Pan L, Xu J. A global heuristically search algorithm for DNA encoding.
Prog Nat Sci 2007;17(6):745–9.

[28] Biggs N. Algebraic graph theory. 2nd ed. Cambridge: Cambridge University
Press; 1993.

http://refhub.elsevier.com/S2095-8099(17)30801-9/h0005
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0010
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0010
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0015
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0015
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0020
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0020
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0025
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0025
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0025
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0030
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0030
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0030
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0035
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0035
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0035
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0040
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0040
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0040
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0045
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0045
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0050
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0050
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0050
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0055
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0055
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0075
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0075
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0080
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0080
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0095
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0095
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0100
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0100
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0105
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0105
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0110
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0110
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0115
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0115
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0120
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0120
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0125
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0125
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0130
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0130
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0135
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0135
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0140
http://refhub.elsevier.com/S2095-8099(17)30801-9/h0140

	A DNA Computing Model for the Graph Vertex Coloring Problem �Based on a Probe Graph
	1 Introduction
	1.1 Previous results
	1.2 Our results
	1.3 Outline of the article

	2 Notation and definition
	2.1 The graph coloring problem
	2.2 Polymerase chain reaction

	3 DNA computing model
	3.1 The algorithm of the model
	3.2 Subgraph division and bridge vertices determination
	3.3 Determining the order and color set for each vertex in the subgraphs
	3.4 Encoding
	3.5 Determining probes
	3.6 Construction of the initial solution space
	3.7 Deleting false solutions
	3.8 Subgraph combination and deletion of false solutions
	3.9 Detecting the true solutions

	4 Implementation of the model
	4.1 Dividing the graph and determining the color set
	4.2 Encoding
	4.3 Implementing the initial solution space of each subgraph
	4.4 Deleting false solutions of the subgraph
	4.5 Finding the true solution of graph G

	5 Complexity analysis
	5.1 Calculation of the walks in a given graph
	5.2 Complexity analysis of decreasing the initial solution space
	5.3 Reducing operation complexity by parallel PCR technology

	6 Conclusions
	ack30
	Acknowledgements
	Compliance with ethics guidelines
	References

