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Recommendation systems are crucially important for the delivery of personalized services to users. With
personalized recommendation services, users can enjoy a variety of targeted recommendations such as
movies, books, ads, restaurants, and more. In addition, personalized recommendation services have
become extremely effective revenue drivers for online business. Despite the great benefits, deploying per-
sonalized recommendation services typically requires the collection of users’ personal data for processing
and analytics, which undesirably makes users susceptible to serious privacy violation issues. Therefore, it
is of paramount importance to develop practical privacy-preserving techniques to maintain the
intelligence of personalized recommendation services while respecting user privacy. In this paper,
we provide a comprehensive survey of the literature related to personalized recommendation services
with privacy protection. We present the general architecture of personalized recommendation systems,
the privacy issues therein, and existing works that focus on privacy-preserving personalized recommen-
dation services. We classify the existing works according to their underlying techniques for personalized
recommendation and privacy protection, and thoroughly discuss and compare their merits and demerits,
especially in terms of privacy and recommendation accuracy. We also identity some future research
directions.

� 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nowadays, recommendation systems are increasingly gaining
popularity and are widely deployed for online services. The wide-
spread use of recommendation systems allows users to enjoy
diverse personalized recommendations for movies, books, ads,
restaurants, hotels, and more. Meanwhile, personalized recom-
mendation services have also become extremely effective revenue
drivers for online business. For example, recent research suggests
that 35% of what consumers purchase on Amazon and 75% of what
they watch on Netflix are attributable to personalized recommen-
dations [1]. A study conducted by the research firm Marketing
Sherpa showed that 11.5% of the revenue generated in the shop-
ping sessions of involved e-commerce sites comes from purchases
of products via personalized recommendation [2].

To support personalized recommendation, the common prac-
tice of existing systems usually involves either collaborative
filtering-based (CFB) recommendation or content-based (CB) rec-
ommendation [3]. CFB recommendation systems usually recom-
mend items based on the similarity between users. For example,
a user rating for a movie would be predicted based on the rat-
ings/decisions of other similar users (classified via some metric).
CB recommendation systems typically generate recommendations
by comparing the properties of items with those of users’ personal
preference/behavioral data. For example, an ad network may com-
pare the keywords associated with ads with the keywords indicat-
ing a user’s preference in order to serve personalized ads. To obtain
personalized recommendations from these systems, users are typ-
ically required to provide their personal data to the recommender
for processing and analytics.

Although personalized recommendation is greatly beneficial,
directly exposing users’ private data to the recommender poses
privacy risks for users [4–6]: ① The provided data undesirably dis-
closes the users’ personal interests to the recommender; ② the
provided data may be abused by the recommender, for example,
by a recommender selling user data to third parties for financial
incentives without user consent [4]; and ③ the provided data
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may be stolen by motivated attackers due to security breaches on
the recommender side [5,6]. Therefore, it is of paramount impor-
tance to develop privacy-preserving techniques for recommenda-
tion systems, so that the intelligence of recommendation systems
is preserved while user privacy is respected.

In this paper, we survey the literature related to personalized
recommendation services with privacy protection. We first present
the general architecture of real-world recommendation systems,
and the privacy issues therein. We then provide a comprehensive
survey of existing solutions that can support privacy-preserving
personalized recommendation services. As mentioned above, the
mechanisms adopted in recommendation systems are usually
either CFB or CB. Based on this observation, we first classify the
existing solutions into two broad categories: ① privacy-
preserving CFB recommendation and ② privacy-preserving CB
recommendation. In the first category, existing works are further
classified into private neighborhood-based approaches and private
machine learning-based approaches, according to the concrete
plaintext techniques adopted. In the second category, existing
works are further classified into private targeted advertising and
private targeted coupon delivery, according to the concrete appli-
cation settings. Therefore, there are four explicit categories in total.

When describing the representative existing works in each cat-
egory, our key insight is to further classify them based on their
underlying security strategies/techniques for privacy protection;
for example, some works rely on cryptographic techniques such
as homomorphic encryption and garbled circuits (GCs), while
others resort to data obfuscation techniques. Among the large vol-
ume of works in this trending area, we carefully select highly cited
representative works that describe popular techniques, as well as
papers that deliver significantly new and emerging techniques.
Our goal is to cover each category as comprehensively as possible
in order to call for further motivated research activities.

The rest of this paper is organized as follows. Section 2 presents
the general architecture and privacy issues of recommendation
systems. Section 3 describes existing works on privacy-
preserving CFB recommendation. Section 4 describes existing
works on privacy-preserving CB recommendation. Section 5 dis-
cusses some future research directions, and Section 6 concludes
the paper.
2. Recommendation systems

2.1. System model

Recommendation systems aim to provide accurate recommen-
dations for users by collecting and processing their personal data
using effective approaches [7]. The system model of a personalized
recommendation service is illustrated in Fig. 1. It contains two
primary entities: users and recommender. Each user has some
Fig. 1. The system model of a personalized recommendation service. The recom-
mender may adopt either collaborative filtering-based (CFB) techniques or content-
based (CB) techniques.
personal data on her local device (e.g., a smartphone), which
indicates her personal interests/preferences. The recommender
collects the users’ personal data, processes the collected data,
and provides personalized recommendations for the users. The
generated recommendations can be provided or shown to users
in various ways, such as through messages and pop-up windows.

To process the collected user data for recommendation, the
recommender may adopt different kinds of techniques. Roughly
speaking, according to the adopted techniques, recommendation
systems can be classified into two categories: CFB recommenda-
tion systems and CB recommendation systems. As mentioned ear-
lier, CFB recommendation systems recommend items based on the
similarity between users. That is, items recommended to a partic-
ular user are those preferred by other users that share similar
preferences [3]. In contrast, CB recommendation systems conduct
recommendation based on the properties of items, which may be
described by certain explicit features (e.g., attributes and
characteristics).

To leverage the similarity between users, CFB recommendation
systems usually adopt either neighborhood-based approaches or
machine learning-based approaches. Neighborhood-based
approaches directly compute the similarity relationship between
users [8], and leverage this relationship to generate personalized
recommendations. In contrast, machine learning-based approaches
first learn a mathematical model from the collected user data, and
then apply the model to generate personalized recommendations.

2.2. Privacy issues

The more personal data a recommender collects, the more
accurate recommendations users can obtain. The user data
collected by the recommender may include information about
the users’ identity, demographic profile, behavioral data, purchase
history, rating history, and more [9]. Such information can be very
privacy-sensitive. For example, the demographic profile refers to
demographic characteristics of the customer, such as age, gender,
weight, and level of education; behavioral data refers to dynamic
data of the customer, such as location, activity status, and brows-
ing history; and rating history refers to the votes that the customer
has provided on items. Providing such information to the
recommender in the clear would pose undesirable privacy risks.
For example, user data could be sold to a third party by the
recommender without user consent, or could even be stolen by
motivated attackers. Therefore, protecting user data in recommen-
dation systems is of critical importance.
3. Privacy-preserving CFB recommendation

CFB recommendation systems typically recommend items
based on similarity measures between users [3]. To support the
functionality of CFB recommendation while preserving user
privacy, a number of works on privacy-preserving CFB recommen-
dation have been undertaken. Because CFB recommendation
systems usually adopt either neighborhood-based approaches or
machine learning-based approaches, we classify these existing
works into two categories: private neighborhood-based
approaches and private machine learning-based approaches.

3.1. Private neighborhood-based approaches

Existing solutions under the umbrella of private neighborhood-
based approaches usually adopt techniques from two main cate-
gories. The first category is cryptographic techniques [4,6,10,11]
and the second is randomization techniques [12–14].
Cryptographic technique-based solutions generally require high
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computation overhead, which may not be well-suited for large-
scale data. However, this type of approach can provide strong
protection for user data under semantic security while ensuring
recommendation accuracy. Randomization technique-based solu-
tions apply randomized perturbation to users’ private data, such
as by adding proper noise; this process generally trades recom-
mendation accuracy for user privacy. However, this type of
approach has low computation overhead and is much faster than
cryptographic technique-based solutions. In what follows, we
describe some representative works on cryptographic technique-
based solutions [4,6,10,11] and randomization technique-based
solutions [12–14].

Erkin et al. [6] proposed an efficient privacy-preserving recom-
mendation system using partially homomorphic encryption (PHE)
and secure multiparty computation (SMC) protocols. Their design
encrypts users’ private data (i.e., user ratings on items) via PHE,
so that the recommender cannot access the original ratings while
still being able to process the data to generate private recommen-
dations. More specifically, in order to avoid active user interaction
with the recommender, their design introduces a semi-trusted
third party to assist the recommender to complete the recommen-
dation in the encrypted domain. Neither the recommender nor the
extra third party can learn users’ private data. With this architec-
ture, users simply upload their encrypted data to the recommender
and then stay offline. The recommender then runs a cryptographic
protocol with the third party to generate personalized recommen-
dations. Because directly applying PHE would lead to high compu-
tation and communication overhead, Erkin et al. [6] further
designed packing techniques to pack several numerical values in
a compact way prior to encryption, thus significantly boosting
the overall system performance.

Later, Badsha et al. [10] proposed a recommendation system
based on the ElGamal cryptosystem, which is a kind of PHE. Com-
pared with the work in Ref. [6], their design does not introduce an
additional party for assistance. However, all users are required to
actively collaborate with the recommender server so as to generate
private recommendations for a target user. Very recently, Badsha
et al. [11] designed a new recommendation system, which relies
on the Boneh–Goh–Nissim (BGN) homomorphic cryptosystem.
Similar to the work in Ref. [6], their design adopts an additional
server for assistance; however, no interaction is introduced
between the recommendation server and the additional server.
The additional server only assists the user in decrypting cipher-
texts whenever necessary. A user who wants to obtain private
recommendations must have active interaction with the
recommendation/additional server. That is, a user is not able to
simply send her private data to the recommendation server for
processing and then later directly obtain personalized
recommendations.

Unlike the above works, Li et al. [4] proposed a privacy-
preserving recommendation system named YANA (short for ‘‘you
are not alone”) based on the idea of user grouping. In YANA, users
are organized into groups with diverse interests, and interact with
the recommender via interest-specific pseudo users. In this way,
individual users’ personal interest information is kept confidential
from the server. They also proposed a set of SMC protocols and rec-
ommendation strategies to protect individual user privacy against
other group members in the recommendation process. The idea
adopted in YANA is similar to that of k-anonymity and l-diversity
in private data publishing. However, in k-anonymity and
l-diversity, user data are collected in the clear by a central server,
which then anonymizes the collected data so as to prevent third
parties from identifying individual users. In the context of private
personalized recommendation, the server collecting user data is
usually untrusted, so users should be grouped and maintained in
a distributed and privacy-preserving manner.
Instead of adopting expensive cryptographic techniques, Polat
and Du [12] proposed the application of data randomization tech-
niques to protect user data. In particular, each user perturbs her
personal data by adding random noise before sending them to
the recommender. As the recommender only receives the noisy
data, it is unable to obtain accurate information about users. As
long as the number of users is sufficiently large, the recommender
can still generate personalized recommendations based on the
aggregate information, which can be obtained from the scrambled
user data with decent accuracy. However, some studies [15–17]
show that this proposed perturbation technique can still leak infor-
mation about users’ private data.

Shokri et al. [13] proposed a new obfuscation mechanism to
obfuscate user-item connections from an untrusted server. In their
system, they assume that there is a central recommender server
storing users’ online profiles and generating recommendations
for users. A user also stores her own locally named offline profile.
The recommender server generates personalized recommenda-
tions according to the online profiles only. Each user independently
synchronizes her online profile with her offline profile when she
updates recently rated items. For privacy consideration, in addition
to the users’ actual ratings, the user also adds other users’ item
information to her profile. In particular, the user arbitrarily selects
some of her peers and certain information about the selected peers’
offline profiles, and adds some of their items to her profile. There-
fore, the user’s actual profile is hidden from the server since the
server does not know which items have been actually rated by
the user. The proposed obfuscation mechanism may still reveal
user’s interests at a higher level. Meanwhile, the obfuscationmech-
anism incurs a tradeoff in recommendation accuracy.

Targeting practical scalability, Chow et al. [14] later presented a
new privacy-preserving collaborative filtering system that has the
ability to accommodate a large number of users. In their system,
users are first clustered based on mutual similarity, through the
proper use of the locality-sensitive hashing (LSH) technique. This
is different from the work in Ref. [12] in which similar users are
identified via noisy ratings. Next, personalized recommendations
are generated based on the aggregate ratings of similar users in
the same cluster. This design creates a primitive to cluster similar
users in a privacy-preserving manner, by modifying the existing
LSH techniques. Chow et al. [14] also injected artificial ratings dur-
ing the process of privately generating personalized
recommendations.

More specifically, their design comprises a clustering step and a
recommendation step. In the clustering step, the recommender
distributes an LSH algorithm to users. With this hashing function,
the similarity between users can be measured by the matches
between the LSH values of their ratings. To compute the LSH value,
each user does some pre-processing, for example, by standardizing
their ratings by subtracting the mean. The LSH value is then
uploaded to the recommender. In the recommendation step, the
recommender computes the average rating of all the users that
share the same LSH value, without seeing them in the clear. To pro-
tect user privacy, Chow et al. [14] proposed having users send
obfuscated ratings to the recommender, which can still allow the
recommender to compute the average rating. In particular, obfus-
cation is conducted by adding artificial ratings for randomly
selected movies. The ratio of the number of artificial ratings against
true ratings is a tunable system parameter, which also decides the
privacy-utility tradeoff. A higher ratio means stronger privacy, but
lower accuracy.

3.2. Private machine learning-based approaches

Other works explore privacy-preserving machine learning-
based recommendation. The basic idea in these works is to first
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train a machine learning model over collected user data in a
privacy-preserving manner, and then apply the model to generate
personalized recommendations. The machine learning techniques
usually adopted in these works include matrix factorization (MF)
and ridge regression (RR). For privacy protection, these works typ-
ically rely on cryptographic techniques that include PHE, fully
homomorphic encryption (FHE), and GCs. In what follows, we
describe some representative works.

A design for a privacy-preserving MF for recommendation sys-
tems was proposed by Nikolaenko et al. [18]. MF techniques aim
to learn item profiles and user profiles from user ratings. Given an
item profile and a user profile (where either of these is a vector), a
rating prediction can then be made by the inner product of vectors.
In this design, the recommender collects encrypted user ratings and
then runs a privacy-preservingMF protocolwith a third party called
the crypto-service provider (CSP). The security goal of this protocol
is mainly to ensure that neither the recommender nor the CSP can
learn user ratings. At the end of protocol execution, item profiles
are produced, which can then be leveraged to make predictions for
users on unrated items. Note that because exposing both item pro-
files and user profiles can easily violate user privacy, this protocol
does not produce the user profiles at the recommender side.

To support privacy-preserving MF, Nikolaenko et al. [18]
adopted a hybrid approach that combines PHE and GC. In this
approach, user ratings are encrypted by a partially homomorphic
cryptosystem under the public key of the CSP. After collecting all
encrypted user ratings, the recommender adds random masks in
the encrypted domain to the user ratings, and sends the resulting
ciphertexts to the CSP. The CSP then decrypts the ciphertexts and
obtains masked user ratings. The CSP subsequently prepares a GC
that takes as input the garbled values of the masked user ratings
and random masks. Inside the circuit, user ratings are first recov-
ered by removing the masks from the masked user ratings; next,
MF is performed. After running a protocol based on the built GC,
the item profiles are produced.

After the item profiles are obtained, a viable way to produce pri-
vate predictions is as follows: The recommender sends the item
profiles to a user, who first recovers her own profile by solving
an optimization problem. Having the item profiles and her own
profile, the user can then produce local predictions for ratings on
unrated items. In addition to this basic method, Nikolaenko et al.
[18] proposed a mechanism to ask the recommender to generate
predictions for users in a privacy-preserving manner.

As a follow-up work to improve the efficiency of the work in
Ref. [18], Kim et al. [19] proposed an efficient privacy-preserving
MF protocol based on FHE. They adopted an architecture similar
to that in Ref. [18], in which a CSP is introduced to assist the rec-
ommender to perform MF, which is based on the gradient descent
method. In this protocol, the CSP holds two key pairs: One is for a
partially homomorphic cryptosystem and the other is for a fully
homomorphic cryptosystem. Each user encrypts her ratings under
the public key of the partially homomorphic cryptosystem and
sends the ciphertexts to the recommender, which then runs a pro-
tocol with the CSP based on random masking to convert the par-
tially homomorphic ciphertexts into fully homomorphic
ciphertexts. Next, the recommender and the CSP jointly perform
gradient descent-based MF to produce encrypted item profiles
and user profiles, based on FHE and random masking. As gradient
descent essentially requires the inner product of vectors, directly
applying FHE is inefficient. Therefore, Kim et al. [19] introduced a
novel data structure to enable the full use of slots supported by
the single-instruction-multiple-data (SIMD) operation in FHE
ciphertext. That is, it allows one homomorphic operation for mul-
tiple operations over vectors during gradient descent.

Considering that disclosing which items a user rated may leak
personal information such as gender, Kim et al. [19] further
enhanced their design by injecting fake ratings and then operating
in the encrypted domain to remove the effects of fake ratings via
the use of input indicators produced by users. Note that while
Ref. [18] also mentioned this approach, it is not included in the
design therein for the efficiency issue.

Unlike the work in Refs. [18] and [19], Nikolaenko et al. [20]
studied another machine learning technique with privacy protec-
tion for recommendation: privacy-preserving RR. In RR-based rec-
ommendation, the recommender collects the preferences and
ratings of many users for different items and runs a learning algo-
rithm on the data. The learning algorithm generates a model that
can be used to predict how a new user will rate certain items. Niko-
laenko et al. [20] designed a protocol to enable the recommender
to learn the model without seeing user data in the clear.

In this system architecture, a third-party CSP is introduced to
cooperate with the recommender in order to complete the learning
procedure. Similar to the work in Ref. [18], Nikolaenko et al. [20]
designed the privacy-preserving RR protocol by combining homo-
morphic encryption with GC. The proposed protocol contains two
phases. In the first phase, each user encrypts her data records
under the public key of the CSP, and sends the ciphertexts to the
recommender. The recommender then exploits the homomorphic
addition property of homomorphic encryption to perform aggrega-
tion across different users’ data. Such aggregation is viable as they
re-formulate the RR problem, leading to significant reduction of
the amount of data for further processing. In the second phase,
the recommender adds random masks to the encrypted aggregate
data in the encrypted domain, and sends the ciphertexts to the CSP.
The CSP then performs decryption and obtains masked aggregated
data. To find out the model securely, the CSP builds a GC, which
takes as input the garbled values of the masked aggregate data
and random masks. After the protocol based on the built GC is
run, the model is produced and can be further used to make predic-
tions for recommendation. This work does not specifically address
how to securely apply the learned model to generate personalized
recommendations.

As a follow-up work to improve the efficiency of the work in
Ref. [20], Hu et al. [21] proposed a new privacy-preserving RR pro-
tocol, which is purely based on PHE and random masking, and
which runs between the recommender and a third party. In order
to achieve efficiency, they heavily leverage the packing-
supported property of PHE, such as the Paillier cryptosystem. In
particular, they designed a packed secure multiplication protocol
that can compute the products of multiple pairs of private inputs
simultaneously in the encrypted domain.

Based on this packed secure multiplication protocol, Hu et al.
[21] further reformulated the RR problem into a problem of solving
linear equations. They then proposed the adoption of either Gaus-
sian elimination or the Jacobi iterative method to efficiently derive
the learned model. In this design, the model is produced in the
encrypted domain and the recommender is unable to obtain the
model. After the encrypted model is obtained, the recommender
sends it to users, who also receive decryption keys from the third
party. The users can then decrypt the model and apply the model
locally.
4. Privacy-preserving CB recommendation

CB recommendation systems recommend items based on the
properties of items. Two common applications of CB recommenda-
tion services are targeted advertising and targeted coupon deliv-
ery. In targeted advertising, the ad network collects users’
personal information and delivers matching ads to targeted users.
In targeted coupon delivery, vendors intend to provide targeted
coupons to certain users who are likely to become loyal routine
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customers, based on the user’s behavior profile. Below, we describe
how to protect user privacy in each of these applications.

4.1. Private targeted advertising

Numerous works have proposed solutions to achieve targeted
ad delivery and protect user’s personal information. The privacy-
protection mechanisms usually adopted in these works include
local targeting [22,23], game theory [23], anonymization [24–26],
cryptographic techniques [27], and obfuscation [28,29]. In what
follows, we describe some representative works.

Toubiana et al. [22] proposed the adoption of the strategy of
local targeting to simultaneously achieve behavioral targeting
and privacy, and presented a private targeted advertising architec-
ture named Adnostic. More specifically, Adnostic first pre-fetches a
list of ads and stores them locally before the user visits publishers’
pages. When the user browses a publisher’s page, the ad network
sends the list of n ads to the user. The user checks whether the
most relevant ad has already existed in the pre-fetched list. If the
selected ad is already stored locally, the browser displays it imme-
diately, which leads to the speedup of page display. Otherwise, the
user needs to download the selected ad from the ad network for
display. Note that regardless of whether the selected ad has
already been stored or not, Adnostic always downloads all the
non-pre-fetched listed ads, so as to avoid information leakage to
the ad network. In Adnostic, n is a configurable parameter; a larger
value allows more accurate targeting, but leads to more consump-
tion in network bandwidth, and vice versa. An appropriate value
for n is 20, as suggested by Adnostic.

In Adnostic, there is a risk that none of the fetched ads will pre-
cisely match the user’s preferences, because the ad network only
delivers a small number of ads to the user. Therefore, to cover
the wide spectrum of user’s interests, at least one ad per segment
for a given interest-segmentation system should be retrieved from
the ad network. Their survey of existing online behavioral advertis-
ing systems found that the number of segments used in existing
systems ranges from 25 to 100, which gives an upper bound on
the number of transmitted ads.

Later, Wang et al. [23] proposed a design that also performs tar-
geting on a user’s local device; however, their focus is to provide
incentives for users to click on ads that are interesting to them
but may cause a potential privacy risk. In particular, they proposed
a privacy-aware compensation framework to promote targeted
advertising with control of privacy risks. In their framework, Wang
et al. [23] considered that users, the ad broker, and advertisers are
rational and selfish entities and that each of them only cares about
their own interests. In order to encourage users to click on interest-
ing ads, the ad network provides a certain amount of compensation
for the users’ privacy leakage from ad clicks. This can effectively
improve the click-through rate and generate more revenue for both
the ad network and advertisers. Wang et al. [23] further modeled
the framework as a three-stage Stackelberg game, in which all
the entities are considered to be selfish, and all have the goal of
maximizing their own utilities by selecting optimal strategies.
They obtained the Nash equilibrium by analyzing the cooperation
and competition relationship among users, the ad network, and
advertisers. In addition, Wang et al. [23] analyzed the competition
between advertisers that share the whole market. Furthermore,
they modeled the market-sharing scenario as a non-cooperative
game and proved that the Nash equilibrium exists. In short, their
proposed framework provides strong motivation for the ad net-
work and advertisers to enforce the compensation policy in prac-
tice, and for users to embrace the service of targeted advertising.

Instead of performing targeting on a user’s local device, Guha
et al. [24] proposed a private advertising architecture called Privad,
which involves an additional party called the dealer in order to
protect user privacy. In Privad, in order to prevent the ad network
from learning the identity of the client, the dealer anonymizes the
communications between the client and the ad network. In order
to prevent the dealer from learning a user’s profiles, the communi-
cations between the client and the ad network are encrypted, and
only the client and the ad network can decrypt the transmitted
messages correctly. However, such an architecture has a potential
limitation: The dealer needs to stay online all the time. This is not
desirable, as a third party should ideally be infrequently contacted
in practice. Later, Backes et al. [25] proposed a provably secure
architecture called ObliviAd for privacy-preserving online behav-
ioral advertising; this architecture leverages the technology of
secure hardware-based private information retrieval (PIR).
ObliviAd implements the PIR using oblivious random-access mem-
ory (ORAM) running on a secure co-processor (SC) that resides on
the ad network side, which allows users to retrieve the ads that
best match their profiles without leaking any private personal
information. In particular, when a user visits a webpage, ObliviAd
first sends the encrypted user profiles to the SC. The SC then
securely searches ads and selects a subset of ads that best fit the
user profiles based on the specified algorithm of the ad network.
The searching and selection schemes are built on the ORAM proto-
col, which can prevent the ad network from learning any informa-
tion about the selected ads. In order to support the case of multiple
different ads per keyword, Backes et al. [25] further modified the
used ORAM scheme. After that, SC delivers selected ads to the user
in encrypted form.

Unlike the work in Refs. [24] and [25], Artail and Farhat [26]
explored private non-local targeting without introducing an addi-
tional third party. Their architecture relies on cooperation among
users to request and distribute ads to each other, and implements
a shuffling algorithm to hide the interests of individual users from
each other and their identity information from the ad network.
First, in order to hide the identity information from the ad network
when requesting ads, each user aggregates her interests based on a
shuffling mechanism in an ad hoc network, and then sends them
through one of the peer users. The selected peer user acts as a
proxy to anonymously contact the ad network with the received
aggregated interests. After receiving the ads, the designated user
distributes them to the users in the same way they were collected,
through an ad hoc connection. Second, since users may not trust
each other, the aggregated interests should not leak private infor-
mation to each other. In their design, Artail and Farhat [26] com-
bined asymmetric cryptosystems and shuffling mechanisms to
protect individual users’ preferences against each other.

Instead of relying on user cooperation, Jiang et al. [27] leveraged
the private stream-searching (PSS) technique to design another
privacy-preserving targeted advertising system that can offer pri-
vacy protection and accurate targeting without introducing an
additional third party. In this system, user profiles are inferred
from the user’s behavioral data and the sensor data on the local
mobile device. A user uses the profile to construct an encrypted
ad request, which is then sent to the untrusted ad network. The
ad network processes the encrypted profiles over all the ads, and
returns encrypted matching ads without knowing any underlying
content. The user recovers matching ads using her private key. In
this way, the ad network can deliver accurate matching ads to
users with strong privacy protection. However, directly applying
PSS to achieve secure and accurate mobile advertising results in
serious practicality issues. That is, it leads to high computation
and communication overhead for the resource-constrained mobile
devices. Therefore, Jiang et al. [27] further proposed mechanisms
to improve the computation and communication performance of
the system. In particular, they proposed using a hierarchical struc-
ture to represent the user and ad preferences, and to leverage ads
auctioning in the ad network. They also proposed encouraging
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users to provide broad categories to narrow the search range of
matched ads, which can save computation cost for the ad network.
They also minimized ad-loading latency by utilizing the pre-
fetching and caching mechanism, which can help to amortize the
computation and communication cost.

Other works also exploit obfuscation techniques to enable pri-
vate targeted advertising. In Ref. [28], Hardt and Nath pointed
out that optimizing the following three design goals is hardly fea-
sible in a targeted advertising system: privacy, efficiency, and ad
relevance. Hence, they formulated an optimization problem for
ad selection in targeted advertising systems. The proposed opti-
mization problem includes three important variables. The first
variable is privacy; that is, how much information a user shares
with the ad network. The second is bandwidth efficiency; that is,
howmany ads are sent to the user. The third variable is utility; that
is, the relevance of the ads that are delivered to users. More specif-
ically, the proposed framework endows users with the rights to
decide the amount of personal information to share with the ad
network. According to the information collected from users, the
ad network selects a set of ads for users, for which the communi-
cation overhead is bounded. Upon receiving the ads from the ad
network, the local device of a user selects the most relevant one
to display, by analyzing all the private information of that user.
Therefore, their framework faces the following challenge: How to
choose the set of delivered ads in a proper way such that the vari-
able utility can be maximized while meeting the constraints on the
variable privacy and bandwidth efficiency. Hardt and Nath [28]
showed that it is a non-deterministic polynomial-time (NP)-hard
problem to find the optimal set of ads, and thus employ approxi-
mation techniques to solve the optimization problem.

In an independent work, Davidson et al. [29] pointed out that
personalization support should be provided by a unified system
within the operation system (OS), rather than by individual apps.
On the one hand, when collecting user preference information
from all apps and OS interactions, it is possible to achieve consid-
erably higher accuracy compared with what any specified app can
obtain individually. On the other hand, the user generally trusts the
OS, so the trusted computing base would not be expanded by per-
forming personalization there. To advocates for OS support for
user-side personalization, Davidson et al. [29] proposed an OS ser-
vice named MoRePriv. To balance privacy and personalization,
MoRePriv generalizes a user’s personal profile to a coarse-grained
profile, which limits the damage from potential leaks of private
information. MoRePriv first captures several streams of (sensitive)
information about the user within the OS, such as the user’s e-mail,
short message service (SMS), and more, which may indicate user
preferences. MoRePriv then infers users’ interests by parsing and
classifying that information. MoRePriv provides a set of application
programing interfaces (APIs) that endow third-party applications
with limited access to the user profile.

4.2. Private targeted coupon delivery

Although the literature contains a considerable amount of
research on private targeted advertising, little work has been done
on secure targeted coupon delivery. Compared with private tar-
geted advertising, targeted coupon delivery raises additional secu-
rity challenges. First, it requires targeted coupons to be delivered to
eligible users whose behavioral profiles accurately satisfy the ven-
dors’ targeting profile. This is to prevent coupon exploitation
attacks. Second, throughout the targeted coupon-delivery proce-
dure, non-eligible users should not learn anything about the ven-
dor’s targeting profile, except for their non-eligibility status.
Otherwise, there is a risk that non-eligible users may try to exploit
the information they learn to get targeted coupons [30–32]. In the
literature, the security strategies/techniques for targeted coupon
delivery include local targeting [30,31] and cryptographic tech-
niques (i.e., PHE and GC) [32].

Partridge et al. [30] were the first to propose a privacy-
preserving targeted coupon delivery framework called PiCoDa.
PiCoDa adopts the strategy of local targeting to achieve the privacy
protection of users. To verify a user’s eligibility for targeted cou-
pons, they resort to the LSH technique to test whether the user’s
behavioral profile approximately matches the vendor’s targeting
profile. As a result, if the LSH value of a user’s behavioral profile
is identical to that of the vendor’s targeting profile, the user is able
to derive the key for decrypting targeted coupons. The major lim-
itation of this work is that a portion of non-eligible users may be
able to obtain targeted coupons, due to the existence of false pos-
itives in LSH. This may violate the vendor’s interests.

Rane and Uzun [31] later proposed another design for private
targeted coupon delivery. They adopted the same security strategy
as in Ref. [30] (i.e., local targeting). However, instead of adopting
LSH to test a user’s eligibility, they proposed the application of
error-correcting codes to encode the user’s behavioral profile and
the vendor’s targeting profile. This new mechanism frees the
design from the problem of false positives. However, the tradeoff
is that some information about the vendor’s targeting profile is
leaked to users. Jiang et al. [32] recently proposed a new design
for private targeted coupon delivery, which combines the tech-
niques of homomorphic encryption and GC. Their design ensures
that targeted coupons are accurately delivered to eligible users
only, while achieving user privacy and vendor protection.
5. Future research directions

(1) Robustness against malicious users. Most of the existing
works on private personalized recommendation services assume
that users honestly participate in the whole procedure. However,
in practice, some users may be malicious and may intentionally
provide invalid data to the recommender in order to disrupt the
system. This could be a serious threat, and is largely under-
explored in existing works on privacy-preserving personalized rec-
ommendation services. Defense against such a threat could be
challenging, especially when the recommender receives only
encrypted user data. To ensure the quality of service, it is impera-
tive to develop verification techniques for privacy-preserving rec-
ommendation systems in order to provide robustness against
data-faking attacks from malicious users. One possible direction
is to leverage some cryptographic techniques such as digital signa-
tures and commitments, thus forcing users to produce committed
data.

(2) Security against malicious recommendation. An implicit
assumption in most of the existing works on private recommenda-
tions is that the recommended items from the recommender are
benign and will do no harm. However, some media-rich recom-
mendation items (e.g., ads) on mobile devices contain JavaScript,
image, or video. It is common for these items to access the external
storage—a shared place where different mobile applications store
their files. Some recent studies [33,34] have shown that these
media-rich recommended items can be exploited to infer
privacy-sensitive information such as gender and social circle. To
defend against the emerging threats of malicious recommendation,
it is critically important to provide an isolated execution environ-
ment on mobile devices and to endow it with the capability of sat-
isfying the entire usage requirements of media-rich recommended
items. In addition, most existing works that introduce a third party
consider that third party to be semi-honest. However, such an
assumption may not always hold true in practice; the third party
may behave maliciously while assisting the recommender to per-
form private personalized recommendations. Developing effective



Table 1
A comparison of works on privacy-preserving personalized recommendation.

Category Techniques Additional
party

Active user
participation

Computation
overhead

Inter-user
interaction

User data
protection

Accuracy
loss

Refs.

NBCF PHE, SMC Yes Yes High No Strong No [6]
NBCF PHE No No High No Strong No [10]
NBCF PHE Yes Yes High No Strong No [11]
NBCF SMC No Yes High Yes Strong No [4]
NBCF Perturbation No No Low No Weak Yes [12]
NBCF Obfuscation No Yes Low Yes Weak Yes [13]
NBCF LSH, artificial ratings No No Low No Weak Yes [14]
MLBCF MF, PHE, GC Yes No High No Strong No [18]
MLBCF MF, FHE Yes No High No Strong No [19]
MLBCF RR, PHE, GC Yes No High No Strong No [20]
MLBCF RR, PHE Yes No High No Strong No [21]
CBRTA Local targeting No No Low No Strong Yes [22]
CBRTA Local targeting, game

theory
No No Low No Strong Yes [23]

CBRTA Anonymization, PKE Yes No High No Strong No [24]
CBRTA ORAM Yes No High No Strong No [25]
CBRTA Anonymization, PKE No Yes High Yes Strong No [26]
CBRTA PSS No No High No Strong No [27]
CBRTA Obfuscation Yes No Low No Weak Yes [28]
CBRTA Obfuscation No No Low No Weak Yes [29]
CBRTCD LSH, local targeting No No Low No Strong Yes [30]
CBRTCD Fuzzy commitment No No Low No Strong No [31]
CBRTCD PHE, GC Yes No High No Strong No [32]

NBCF: neighborhood-based collaborative filtering; MLBCF: machine learning-based collaborative filtering; CBRTA: content-based recommendation for targeted advertising;
CBRTCD: content-based recommendation for targeted coupon delivery; PHE: partially homomorphic encryption; FHE: fully homomorphic encryption; GC: garbled circuit;
MF: matrix factorization; RR: ridge regression; SMC: secure multiparty computation; PKE: public-key encryption; LSH: locality-sensitive hashing; ORAM: oblivious random-
access memory; PSS: private stream searching.
The indicator ‘‘Active user participation” is marked ‘‘Yes” if more than one round of user-server interaction is needed upon a request for private recommendations or if inter-
user interaction is required. The indicator ‘‘User data protection” is marked ‘‘Strong” if user data are held locally or protected via cryptographic techniques. The indicator
‘‘Computation overhead” is marked ‘‘High” if cryptographic operations are involved.
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mechanisms to defend against such a malicious adversary is also
crucially important.

(3) Mobile-oriented cost efficiency. Along with the ubiquity of
mobile devices, mobile personalized recommendation services are
becoming increasingly prevalent. However, mobile devices are
usually resource-constrained, especially in terms of battery and
bandwidth. In order to achieve a satisfying user experience in
mobile personalized recommendation services while preserving
user privacy, a security design should impose lightweight cost on
mobile devices. Therefore, it is worthwhile to continue the line of
research of developing lightweight privacy-preserving techniques
for mobile devices in recommendation services. One possible
direction is to integrate techniques such as user network traffic
analysis [35] and social networking [36] in order to propose new
innovative privacy-preserving solutions. Another direction may
be to design lightweight privacy-preserving solutions by leverag-
ing advanced trusted hardware such as Intel� Software Guard
Extensions (Intel� SGX), which has the potential to provide secure
computations at minimal performance overhead. In addition, when
conducting a performance evaluation of a security design for pri-
vate mobile personalized recommendation services, it is necessary
to consider the energy cost on mobile devices, rather than limiting
the evaluation to computation and communication costs. This is
because battery energy is one of the most precious resources of
mobile devices, and is a practical factor that directly affects user
experience.
6. Conclusions

In this paper, we surveyed the literature related to privacy-
preserving personalized recommendation services. We first pre-
sented the system architecture of personalized recommendation
services, commonly adopted recommendation techniques, and pri-
vacy issues posed by personalized recommendation services. We
then described existing privacy-preserving techniques for
personalized recommendation services, which are classified into
two broad categories: privacy-preserving CFB recommendation
and privacy-preserving CB recommendation. We then further
classified privacy-preserving CFB recommendation into private
neighborhood-based approaches and private machine learning-
based approaches, and further classified privacy-preserving CB
recommendation into private targeted advertising and private tar-
geted coupon delivery. A comparison of the described existing
works on privacy-preserving recommendation is summarized in
Table 1 [4,6,10–14,18–32]. Finally, we provided some discussion
on future research directions.
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