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Topology optimization is a powerful design approach that is used to determine the optimal topology in
order to obtain the desired functional performance. It has been widely used to improve structural perfor-
mance in engineering fields such as in the aerospace and automobile industries. However, some gaps still
exist between topology optimization and engineering application, which significantly hinder the applica-
tion of topology optimization. One of these gaps is how to interpret topology results, especially those
obtained using the density framework, into parametric computer-aided design (CAD) models that are
ready for subsequent shape optimization and manufacturing. In this paper, a newmethod for interpreting
topology optimization results into stereolithography (STL) models and parametric CAD models is pro-
posed. First, we extract the skeleton of the topology optimization result in order to ensure shape preser-
vation and use a filtering method to ensure characteristics preservation. After this process, the
distribution of the nodes in the boundary of the topology optimization result is denser, which will benefit
the subsequent curve fitting. Using the curvature and the derivative of curvature of the uniform B-spline
curve, an adaptive B-spline fitting method is proposed in order to obtain a parametric CAD model with
the fewest control points meeting the requirement of the fitting error. A case study is presented to pro-
vide a detailed description of the proposed method, and two more examples are shown to demonstrate
the validity and versatility of the proposed method.

� 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With progress in computer science and technology, structural
optimization design has become one of the most important means
of obtaining light-weight and high-performance structures. In gen-
eral, structural optimization is divided into size optimization,
shape optimization, and topology optimization, according to differ-
ent types of design variables. Among these three optimization
methods, topology optimization is regarded as the most generic
because it can provide engineering designers with new and
sometimes even unanticipated design ideas without requiring a
pre-established design. In essence, topology optimization uses
optimization technology to attempt to discover where material
should be placed in the design domain. During the past four
decades, topology optimization has achieved rapid development
and has been successfully applied to the design of structures in
many industrial fields, including the aerospace, automobile, and
biomedicine industries [1,2]. Several different topology optimiza-
tion approaches have been proposed; these include the density
approach [3,4], the level set approach [5,6], evolutionary
approaches (evolutionary structural optimization/bi-directional
evolutionary structural optimization, ESO/BESO) [7], and several
others. Interested readers can refer to Ref. [8] for more details.
Among these approaches, the density approach, which uses
element-constant density to describe the structural topology, is
the most mature technology due to its efficiency and stability in
computation.

Additive manufacturing (AM), also known as three-dimensional
(3D) printing, fabricates structures by adding material in a layer-
by-layer fashion [9–11]. This manufacturing process overturns
the traditional manufactural concept of subtracting material from
structures, and makes the fabrication of new and complex geomet-
rical features possible [12–16]. Thus, AM provides an efficient way
to reduce the design cycle by trial-manufacturing the results of
topology optimization using the AM process, and then conducting
experiments to evaluate structural performance [17–19]. However,
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Fig. 1. Flowchart of the proposed method.

Fig. 2. Illustration of the density-based topology optimization.
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topological results obtained using the density approach are
described in terms of element density, and lack basic geometric
features such as points, lines, areas, and volumes. This description
method makes it difficult to manufacture the results of topology
optimization, and makes these results difficult to use in subse-
quent studies such as shape optimization. As a result, many man-
ual interventions are needed to interpret topology optimization
results to produce a computer-aided design (CAD) model, and this
process is time consuming and labor intensive [2]. Therefore, there
is great demand for an automatic method of converting the results
of topology optimization into CAD models in a quick and efficient
manner.

Many file formats, such as stereolithography (STL), initial
graphics exchange specification (IGES), and so forth, have been
developed to describe CAD models for different manufacturing
technologies. STL is widely used in rapid prototyping manufactur-
ing for its simple format, which was first created by 3D Systems
[20] for STL CAD software. This file format describes only the
surface geometry of a 3D object using triangular facets without
representations of color, texture, or other common CAD model
attributes. Many other software packages, such as AutoCAD, Solid-
Designer, and Unigraphics, can read and import this file format for
rapid prototyping, AM, and computer-aided manufacturing. IGES is
one of the file formats used to describe parametric CAD models
[21]; it provides a standard format for information exchange
between different CAD software programs, such as Maya, Pro/
ENGINEER, Softimage, and CATIA. At this stage, most commercial
CAD software can transform IGES into STL for AM, although the
inverse transformation is infeasible.

Many approaches have been proposed to obtain CAD models
from topology optimization results. The density contour approach
is the most widely used method in the literature; in this approach,
boundaries are extracted using the isoline of the density file
[22–24]. However, this method requires determining a proper
density threshold by testing several times to obtain an effective
result. Moreover, very thin parts, rough surfaces, and disconnected
structural parts (isolated islands) may occur if this method is used
to obtain CAD models of complex structures [25]. Furthermore,
multiple repeated model revisions and human interventions are
required. Other researchers have used basic shape templates
[26,27], such as parametric spheres, cylinders, and rectangles, to
obtain a fitted model of topology optimization results. In this
method, only a limited number of shape templates can be used,
and the question of how to increase the fitting accuracy becomes
the research priority [28,29]. Other geometric reconstruction
approaches for topology optimization results are mainly based on
interpolation functions, such as B-spline curves, bi-quartic surface
splines, T-spline curves, and non-uniform rational B-spline
[30–35]. These methods are suitable for arbitrary complex surfaces
and can be seamlessly connected to IGES files; however, a dense
point cloud is required in advance, and the computational con-
sumption is too large. Yi and Kim [36] recently proposed a method
to identify the boundaries of topology optimization results using
basic parametric features, such as lines, arcs, circles, and fillets.
In comparison with other methods, this method deals with compli-
cated boundary shapes with a relatively modest number of fitting
variables, although a clear 0–1 topology optimization result with-
out very thin parts or isolated islands is required in advance.

In this paper, an automatic process for converting topology
optimization results into STL models (STL file) and parametric
CAD models (IGES file) is proposed. The flowchart of the proposed
method is shown in Fig. 1. First, in order to avoid very thin parts
and isolated islands, small features of the topology optimization
results are identified. Second, boundary refinement is executed
along with characteristics preservation, in order to obtain a dense
set of boundary points. At this point, an STL file of the topology
optimization result can be obtained. Finally, an adaptive B-spline
fitting is proposed in the output process to obtain a smooth
parametric CAD model, which can be used for shape optimization.
This new realization method for transforming topology optimiza-
tion designs into STL or IGES formats can bridge the gap between
design and manufacturing, benefit rapid trial-manufacturing with
AM and fine design using shape optimization, and ultimately
reduce the time required for production cycles.

This paper is organized as follows: Section 2 provides an over-
view of density-based topology optimization; in Sections 3 and 4,
the process of the new method is presented, using the cantilever
beam as an example; and in Section 5, two more numerical
examples are shown to illustrate the robustness of the proposed
method.

2. Density-based topology optimization

2.1. Overview

Topology optimization attempts to answer the question of what
the best distribution of material within a prescribed domain is; it
can be traced back to the homogenization method for topology
optimization that was proposed by Bendsøe and Kikuchi [37]. On
this basis, Bendsøe [38] and Zhou and Rozvany [3] proposed the
solid isotropic material with penalization (SIMP) method, which
is regarded as a milestone in the development of topology opti-
mization. The basic idea of the SIMP method is to discretize the
design domain by means of a finite element mesh, and to optimize
the element density, qi, which is either 1 or 0 depending on
whether the element is filled with material or void. Fig. 2 shows
the topology of a structure, in which the black elements (qi ¼ 1)
represent the material and the white elements (qi ¼ 0) represent
the void. The mathematical formulation of the element density
can be written as follows:

qi ¼
1 Xi � Xmat

0 Xi � X nXmat

(
ð1Þ



Fig. 3. Illustration of the design model.

Fig. 4. The topology optimization result.

Fig. 5. The STL models obtained using Liu’s methods [43]. (a) The density threshold
method (cube.stl); (b) the density contour method (iso.stl).
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where Xi is the domain of the ith element, X represents the design
domain, and Xmat represents the structural topology. In order to
solve this discrete optimization problem, the elastic modulus Ei of
the ith element is defined as follows:

EiðqiÞ ¼ qp
i E0 ð2Þ

where p is the penalization power. For p ¼ 1, this problem corre-
sponds to the classical ‘‘variable thickness sheet optimization” that
was first studied by Cheng and Olhoff [39]. Studies showed that
many grey density elements with 0 < qi < 1, which have no physi-
cal meaning, are obtained. Thus, p > 1 is used in order to yield dis-
tinctive ‘‘0–1” designs. It should be noted that choosing a p that is
too low or too high causes either too many grey density elements
or too-rapid convergence to local minima; therefore, a proper value
of p is needed. Many numerical examples show that p ¼ 3 ensures
good convergence to a solution that is close to 0–1.

This paper considers the minimal compliance problem, which is
widely used for testing various new methods in the literature. The
mathematical formulation can be written in the finite element
form as follows:

find q ¼ ðq1;q2; . . . ;qmÞ 2 Rm

min
q2Rm

c ¼ UTF

s:t: KðqÞU ¼ F
g 6 0
0 6 qe 6 1; e ¼ 1; . . . ;Ne

ð3Þ

where q is the design variable vector, which is composed of the
element-wise element density qe; m is the number of design vari-
ables; Rm represents the set of m real numbers; c is the structural
compliance, and is used as the objective function; K is the global
stiffness matrix; U is the displacement vector; and F is the external
load vector. The variable g represents the volume constraint, which
is measured as follows:

g ¼ 1
cV

XN
e¼1

qeve � 1 ð4Þ

where qe is the element-wise element density, ve represents the
element volume, c is the volume fraction, and V is the total volume
of the design domain. In this paper, c ¼ 0:3 is used, and the material
properties of the structure are isotropic, with a Young’s modulus of
E0 = 1 MPa and a Poisson’s ratio of m ¼ 0:3. The gradient-based iter-
ative method—method of moving asymptotes (MMA) [40] is used to
solve the topology optimization model Eq. (3). Sigmund [41] has
given a 99 line MATLAB code for topology optimization implemen-
tation for the compliance minimization of structures, which pro-
vides a basic flowchart for topology optimization. On the basis of
the efficient 88 line MATLAB code [42], Ref. [43] provides an effi-
cient MATLAB code to solve 3D topology optimization problems.

2.2. Topology optimization of the cantilever beam

In this section, the topology optimization result for the can-
tilever beam shown in Fig. 3 is given. The design domain measures
120 mm � 40 mm, with the left side of the domain being fixed and
subjected to a concentrated load acting in the negative y-axis
direction on the bottom-right corner. The design domain is
discretized by 30 � 10 four-node plane stress elements.

Fig. 4 depicts the topology optimization result, in which the
black elements represent the structure and the white elements
represent the void. It should be noted that many grey density
elements, which have an element density lower than 1 and greater
than 0, exist in the topology optimization result, and it is unclear
how to manufacture these grey elements. Thus, it is very important
to find methods to interpret design results with grey elements into
clear 0–1 and readable results for 3D printing.

Liu and Tovar [43] have tried to apply the density threshold or
density contour method to transform topology optimization
results into a clear 0–1 result, and have written a MATLAB function
Top3dSTL_v3 to write an STL file of the 0–1 result. Fig. 5 shows the
STL models that are obtained using these two methods,
respectively. This figure shows that the obtained results contain
unwelcome thin parts (point-point connections) or isolated
islands. The purpose of this paper is to solve these two problems.
3. Transformation of topology optimization results into STL

In this section, a new post-processing procedure with two main
steps is proposed to obtain clear 0–1 topology optimization results
without point-point connections and isolated islands. Next,
MATLAB function Top3dSTL_v3 is used to write the STL file of the
clear 0–1 result, which is suitable for a 3D printer.
3.1. Extracting the skeleton of the result to identify small features

As shown in Fig. 5, point-point connections or isolated islands
usually appear in small structural features. Thus, in order to avoid
these two phenomena, small structural features should be identi-
fied first. In our method, the skeleton and its inscribed circle radius
from the topology optimization result are used to identify these
small features. The steps are as follows:

Step 1.1: Truncating element density and refining the mesh
Select a value of density threshold qcutoff , and define the density

of the ith element as qi ¼ 1 when qi P qcutoff and as qi ¼ 0 when
qi < qcutoff in order to obtain an initial clear 0–1 result. Fig. 6 shows
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the topology optimization results for different thresholds;
engineers can choose one of these according to their experience.
Next, the mesh is refined in order to extract the skeleton of the
result. Fig. 7 illustrates the mesh refinement, in which each mesh
segment is divided into nc � nc smaller mesh segments, where
nc > 0 is a positive value. It should be noted that without mesh
refinement, extraction of the structural skeleton may fail.

Step 1.2: Extracting the skeleton of the result and removing the
burrs

Define the curve that is composed of the center of the inscribed
circle which has at least two tangent points in the structural
boundary, as illustrated in Fig. 8. In practice, the MATLAB functions
skel and spur are used to extract the skeleton and remove the
burrs, respectively. The radius of the inscribed circle is defined as
the feature size of the skeleton.

Step 1.3: Identifying the small features
According to the manufacturing precision of the 3D printer that

is used, skeletons with a feature size (Rweak) that is lower than half
of the manufacturing precision (llimit) are defined as the small
features.
Fig. 6. Topology optimization results for different thresholds. (a) qcutoff ¼ 0:4;
(b) qcutoff ¼ 0:5; (c) qcutoff ¼ 0:6; (d) qcutoff ¼ 0:7.

Fig. 7. Mesh refinement.

Fig. 8. Schematic illustration of the skeleton of a structure.

Fig. 9. A flowchart for identifying the small features in a topology optimization
result. (a) Topology optimization result; (b) Step 1.1: Truncating element density
and refining the mesh; (c) Step 1.2: Extracting the skeleton of the result and
removing the burrs; (d) Step 1.3: Identifying the small features.
Fig. 9 provides a flowchart for identifying the small features in a
topology optimization result.

3.2. Boundary refinement with characteristics preservation

In order to avoid a serrated boundary with sparse nodes and
isolated islands, a boundary-refinement process with characteris-
tics preservation is performed. Fig. 10 provides a flowchart for
the specific process, which includes the following steps.

Step 2.1: Refining
Refine the mesh of the original topology optimization result.

This process is similar to Step 1.1, but does not include truncating
the density of the topology optimization result in advance.

Step 2.2: Handling the small features
Increase the element density of the small features by 0.1:

qweak ¼ qinitial þ 0:1 ð5Þ
Step 2.3: Density filtering
Apply the density-filtering technique to avoid a serrated

boundary:

~qi ¼
PN

j¼1hði; jÞqjPN
j¼1hði; jÞ

; j ¼ 1; � � � ;N ð6Þ

where ~qi is the element density after density filtering;
hði; jÞ ¼ maxðrfilter � kxi � xekÞ is the weight function, in which xi
and xe represent the coordinates of the centers of the ith and eth
elements, respectively; rfilter is the filtering radius, and rfilter ¼ 1 in
this method. After this process, a smoother boundary can be
obtained.

Step 2.4: Truncating the element densities by volume
preservation

Truncate the element densities obtained after filtering by means
of a threshold value, which is determined for volume preservation
and which is calculated using the bisection method. Next, calculate
the feature size of the skeleton, as described in Step 1.2, to
determine whether any small features remain. If small features
are still present, return to Step 2.2; if not, proceed to Step 2.5.

Step 2.5: Obtaining the STL file



Fig. 10. Flowchart of boundary refinement with characteristics preservation.
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Apply the density threshold or density contour to interpret the
topology optimization result and obtain a clear 0–1 result. Use the
MATLAB function Top3dSTL_v3 to transform the result into an STL
file, as shown in Fig. 11. Compared with the results shown in Fig. 5,
the results obtained by the proposed method are more suitable for
manufacturing.
4. Parametric CAD model (IGES file)

In the previous section, we provided a flowchart for converting
the topology optimization result into a clear 0–1 result with a
relatively smoother boundary and denser boundary point cloud.
Furthermore, an STL file, which can be directly manufactured by
a 3D printer to achieve a rapid prototype, was obtained. However,
as noted earlier, an STL model is not suitable for model correction.
Fig. 11. The STL model obtained using the proposed method. (a) The density
threshold method (cube.stl); (b) the density contour method (iso.stl).
Engineers cannot modify this model to take the manufacturing
constraints into consideration or reduce the stress concentration,
so a parametric CAD model is preferred. Chacón et al. [35] applied
a cubic uniform B-spline curve to obtain a fitting boundary for two-
dimensional (2D) topology optimization results. Nevertheless, this
method needs too many control points for it to be suitable for sub-
sequent shape optimization. In this section, an adaptive B-spline
fitting is proposed in order to obtain a smooth parametric CAD
model with the fewest possible control points, which is suitable
for shape optimization. The process is as follows:

Step 3.1: Extracting the boundary points and using a cubic
uniform B-spline curve

Extract the boundary points and use a cubic uniform B-spline
curve to obtain the fitting curves of the topology optimization
result. Fig. 12 shows the fitted result, which has 97 control points;
the red points are the boundary nodes, the black points are the
control points, and the blue lines are the fitting curves. The func-
tion of the cubic uniform B-spline curve is expressed as sðuÞ.

Step 3.2: Reducing the number of control points
In order to reduce the number of control points, we propose a

strategy to determine the locations of the nodes used in the non-
uniform B-spline curve fitting. The basic idea is to reduce the num-
ber of control points in the straight lines and para-curves, which
allows the curvature kðuiÞ and the derivative of curvature v iðuiÞ
of the uniform B-spline curve to be calculated as follows:

kðuiÞ ¼ jjs0ðuiÞ � s00ðuiÞjj
s0ðuiÞk3

��� ð7Þ
Fig. 12. Cubic uniform B-spline curve-fitting result. (a) Boundary nodes; (b) fitting
result (97 control points).
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v iðuiÞ ¼ DkðuiÞ
Dui

����
���� � kðuiþ1Þ � kðuiÞ

uiþ1 � ui

����
���� ð8Þ

where jj � jj denotes the 2-norm; and s0ðuiÞ and s00ðuiÞ represent the
first and second derivative of sðuÞ, respectively. Fig. 13(a) denotes
a cubic uniform B-spline curve that is used for boundary fitting
and Fig. 13(b) shows the curvature and the derivative of curvature
of one of the uniform B-spline curves.

Step 3.3: Obtaining a standard IGES file
According to geometry theory, a large s0ðuiÞ value represents a

turning of the curve and a large s00ðuiÞ value represents the adjacent
point between a turning and a straight line. In this paper, a thresh-
old value, kthreshold, is chosen. Points with s00ðuiÞ > kthreshold are set as
the nodes (i.e., the green points shown in Fig. 13(a)) and the middle
point between two nodes is set as the control point (i.e., the black
points shown in Fig. 13(a)). Non-uniform fitting curves can then be
obtained.

The adaptive B-spline fitting is shown in Fig. 13(c); only 43 con-
trol points are used, of which the red points are boundary nodes,
the black points are the control points, and the blue lines are the
fitting curves.

By using the MATLAB function igesout, it is possible to obtain a
standard IGES file from the B-spline curve. Fig. 14(a) and (b) show
the parametric model of the topology optimization result in CAD
software and in computer-aided engineering (CAE) software,
respectively. Fig. 14(c) shows a specimen that was fabricated using
the fused deposition modeling (FDM) technique.

5. Numerical examples

In this section, two numerical examples are provided to demon-
strate the efficiency and robustness of the proposed method. Fur-
thermore, a shape optimization is performed to reduce the stress
concentration in the second example.
Fig. 13. Illustration of the adaptive B-spline fitting. (a) A cubic uniform B-spline
curve is used for boundary fitting; (b) the curvature and the derivative of curvature
of the uniform B-spline curve; (c) the adaptive B-spline fitting (43 control points).
5.1. Heat conduction problem

In the first example, we consider a heat conduction problem.
The design domain is a square plate with the dimensions 50 mm
� 50 mm, as shown in Fig. 15(a). All the sides are set as insulating
boundaries, and the temperature of the red point is set as T ¼ 0.
The center of the design domain has a heat source Q. The topology
optimization result is shown in Fig. 15(b), which is a tree-like
topology.

Next, we apply the proposed method to this topology optimiza-
tion result in order to obtain a CAD model. Following the proce-
dures described above, we first identify the small features and
Fig. 14. Parametric model of the topology optimization result. (a) Rhinos (CAD)
software; (b) ANSYS (CAE) software; (c) specimen fabricated using FDM.

Fig. 15. (a) The design domain of the heat conduction problem; (b) the topology
optimization result.



Fig. 16. Results of the heat conduction problem obtained after Steps 1 and 2. (a) Steps 1.1 and 1.2; (b) Step 1.3; (c) Step 2.
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then refine the boundaries while preserving the characteristics
(Steps 1 and 2). Fig. 16 shows the results after each sub-step. The
parameters qcutoff ¼ 0:2 and nc ¼ 8 are used in these two steps.

Two parametric CAD models are then obtained by using
uniform fitting and adaptive fitting, respectively. For the uniform
fitting result, 439 control points are needed to obtain a smooth
result, while only 201 control points are needed for the adaptive
fitting. Fig. 17 depicts the CAD models that were obtained using
these two methods, and the resulting specimens that were
fabricated using FDM. The red points are the boundary nodes,
the green points are the control points, and the blue lines are
the fitting curves.
Fig. 17. CAD models of the fitting results and corresponding products fabricated
using FDM. (a) Uniform fitting result; (b) adaptive fitting result.

Fig. 19. Results of the L-shape beam obtained after Steps 1
5.2. L-shape beam

In this section, the example of an L-shape beam is used to
validate the efficiency of the proposed method, and a shape
optimization is performed to reduce the stress concentration in
the corner. The design domain and its topology optimization result
are shown in Fig. 18.

The same process used with the first example is used here.
Fig. 19 shows the results after Steps 1 and 2. The parameters
qcutoff ¼ 0:5 and nc ¼ 8 are used in this example.

Two parametric CAD models are then obtained by using
uniform fitting and adaptive fitting, respectively. For the uniform
fitting result, 113 control points are needed to obtain a smooth
result, while only 57 control points are needed for the adaptive
fitting. Using the new method proposed in this paper, a parametric
CAD model is obtained, as shown in Fig. 20. The red points are the
boundary nodes, the black points are the control points, and the
blue lines are the fitting curves.

Using the MATLAB function igesout, a standard IGES file based
on the adaptive fitting result is obtained, and a finite element
model, as shown in Fig. 21, is established. All freedoms on the
top side are constrained, and a force of P ¼ 100 N is applied on
the middle of the right side (the red arrow in Fig. 21). The finite
and 2. (a) Steps 1.1 and 1.2; (b) Step 1.3; (c) Step 2.

Fig. 18. (a) Design domain of an L-shape beam (unit: mm); (b) the topology
optimization result.



284 S. Liu et al. / Engineering 4 (2018) 277–285
element size is 1, the elastic modulus of the material is 236 MPa,
and the Poisson’s ratio is 0.3.

In order to reduce the stress concentration in the corner, a
shape optimization problem is performed, as formulated below:

find xi; yi i ¼ 1; . . . ;Ncp

min c ¼ UTKU
s:t: rmax 6 100

v ¼ VA

50� 150
6 0:524

KU ¼ F
�3 < Dxi;Dyi < 3 i ¼ 1; . . . ;Ncp

ð9Þ
Fig. 20. CAD models of the fitting results. (a) Uniform fitting result; (b) adaptive
fitting result.

Fig. 21. Finite element model of the parametric model.

Fig. 23. Von Mises stress nephograms for the two results. (a) Von Mises stress nep
optimization.
where rmax is the maximum stress of the structure under the force
P; xi, yi are the coordinates of the ith control point, and are set as
design variables; Ncp is the number of control points; and VA is
the volume of the optimized structure. Other symbols have the
same meanings as Eq. (3). Volume constraint and stress constraint
are considered in this paper. The multi-island genetic algorithm
(MIGA) is used to solve this problem, and the optimized result is
shown in Fig. 22(b).

The finite element method is used to analyze these two results,
and the von Mises stress nephograms are shown in Fig. 23. A
comparison of these two results reveals that the maximum von
Mises stress is reduced from 110 MPa to 77.3 MPa after the shape
optimization.

6. Conclusions

This paper presents an automatic method for converting a
topology optimization result into an STL file that is suitable for
AM. In the proposed method, the skeleton of the topology results
is extracted to ensure shape preservation, and a filtering method
is used to ensure characteristics preservation. After this process,
a relatively smoother boundary of the topology optimization result
with a denser boundary point cloud is obtained. An adaptive B-
spline fitting is proposed in the obtained input to obtain a smooth,
parametric CAD model with fewer control points, which is suitable
for shape optimization to improve the performance of the result.
This approach to interpreting topology optimization results
reduces the time that is required to utilize the results and helps
to standardize the interpretation process.
Fig. 22. Optimized results before and after shape optimization. (a) Result before
shape optimization; (b) result after shape optimization.

hogram before shape optimization; (b) von Mises stress nephogram after shape
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