Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Mechanical Engineering >> 2020, Volume 15, Issue 2 doi: 10.1007/s11465-019-0573-7

Dynamic modulation performance of ferroelectric liquid crystal polarization rotators and Mueller matrix polarimeter optimization

School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Accepted: 2020-03-11 Available online: 2020-03-11

Next Previous

Abstract

A ferroelectric liquid crystal polarization rotator (FLCPR) has been widely used in polarization measurement due to its fast and stable modulation characteristics. The accurate characterization of the modulation performance of FLCPR directly affects the measurement accuracy of the instrument based on liquid crystal modulation. In this study, FLCPR is accurately characterized using a self-developed high-speed Stokes polarimeter. Strong linear and weak circular birefringence are observed during modulation processes, and all the optical parameters of FLCPR are dependent on driving voltage. A dual FLCPR-based Mueller matrix polarimeter is designed on the basis of the Stokes polarimeter. The designed polarimeter combines the advantages of the high modulation frequency of FLCPR and the ultrahigh temporal resolution of the fast polarization measurement system in the Stokes polarimeter. The optimal configuration of the designed polarizer is predicted in accordance with singular value decomposition. A simulated thickness measurement of a 24 nm standard SiO thin film is performed using the optimal configuration. Results show that the relative error in thickness measurement caused by using the unsatisfactory modulation characteristics of FLCPR reaches up to −4.34%. This finding demonstrates the importance of the accurate characterization of FLCPR in developing a Mueller matrix polarizer.

Related Research