Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Mechanical Engineering >> 2020, Volume 15, Issue 2 doi: 10.1007/s11465-019-0574-6

Digital high-efficiency print forming method and device for multi-material casting molds

. State Key Laboratory of Advanced Forming Technology and Equipment, China Academy of Machinery Science and Technology, Beijing 100044, China.. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

Accepted: 2020-03-11 Available online: 2020-03-11

Next Previous

Abstract

Sand mold 3D printing technology based on the principle of droplet ejection has undergone rapid development in recent years and has elicited increasing attention from engineers and technicians. However, current sand mold 3D printing technology exhibits several problems, such as single-material printing molds, low manufacturing efficiency, and necessary post-process drying and heating for the manufacture of sand molds. This study proposes a novel high-efficiency print forming method and device for multi-material casting molds. The proposed method is specifically related to the integrated forming of two-way coating and printing and the short-flow manufacture of roller compaction and layered heating. These processes can realize the high-efficiency print forming of high-performance sand molds. Experimental results demonstrate that the efficiency of sand mold fabrication can be increased by 200% using the proposed two-way coating and printing method. The integrated forming method for layered heating and roller compaction presented in this study effectively shortens the manufacturing process for 3D-printed sand molds, increases sand mold strength by 63.8%, and reduces resin usage by approximately 30%. The manufacture of multi-material casting molds is demonstrated on typical wheeled cast-iron parts. This research provides theoretical guidance for the engineering application of sand mold 3D printing.

Related Research