Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2007, Volume 1, Issue 3 doi: 10.1007/s11705-007-0049-x

Experimental investigation on possibility of oxygen enrichment by using gradient magnetic fields

1.School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2.School of Applied Science, University of Science and Technology Beijing, Beijing 100083, China

Available online: 2007-09-05

Next Previous

Abstract

This paper presents a novel method that uses the interception effect of gradient magnetic field on oxygen molecules to realize enrichment. The use of two opposite magnetic poles of two magnets at a certain distance forms a magnetic space having a field intensity gradient near its borders. When air injected into the magnetic space outflows from the magnetic space via its borders, oxygen molecules in the air will experience the interception effect of the gradient magnetic field, but nitrogen molecules will outflow from the magnetic space without hindrance. Thus, continuous oxygen enrichment is realized. The enrichment degree of oxygen reaches 0.65% when the inlet and outlet air flows are 40 mL/min and 20 mL/min, respectively, and the gas temperature is 298 K and the maximal product of magnetic flux density and its gradient is 563 T/m (the distance between two magnetic poles is 1 mm). When the gas temperature rises to 343 K, the enrichment degree drops to 0.32%; and when the maximal product of magnetic flux density and field intensity gradient drops to 101 T/m (the distance between two magnetic poles is 4 mm), the enrichment degree drops to 0.23%. The experimental results show that there is an optimal ratio between the inlet air flow and the outlet air flow. Under the experimental conditions in this paper, the value is about 2.0. It is demonstrated that the method presented in this paper can continuously enrich oxygen and has a higher enrichment degree than other oxygen-enrichment methods using magnetic separation.

Related Research