Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2008, Volume 2, Issue 1 doi: 10.1007/s11705-008-0009-0

Numerical simulation of two-dimensional spouted bed with draft plates by discrete element method

1.Department of Chemical and Biochemical Engineering, Zhejiang University; 2.Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University

Available online: 2008-03-05

Next Previous

Abstract

A discrete element method (DEM)-computational fluid dynamics (CFD) two-way coupling method was employed to simulate the hydrodynamics in a two-dimensional spouted bed with draft plates. The motion of particles was modeled by the DEM and the gas flow was modeled by the Navier-Stokes equation. The interactions between gas and particles were considered using a two-way coupling method. The motion of particles in the spouted bed with complex geometry was solved by combining DEM and boundary element method (BEM). The minimal spouted velocity was obtained by the BEM-DEM-CFD simulation and the variation of the flow pattern in the bed with different superficial gas velocity was studied. The relationship between the pressure drop of the spouted bed and the superficial gas velocity was achieved from the simulations. The radial profile of the averaged vertical velocities of particles and the profile of the averaged void fraction in the spout and the annulus were statistically analyzed. The flow characteristics of the gas-solid system in the two-dimensional spouted bed were clearly described by the simulation results.

Related Research