Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2010, Volume 4, Issue 4 doi: 10.1007/s11705-010-0502-0

Modeling the gas flow in a cyclone separator at different temperature and pressure

1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China; 2. Department of Chemical Engineering, University of New Brunswick, PO Box 4400, Fredericton, NB Canada, E3B 5A3

Available online: 2010-12-05

Next Previous

Abstract

The gas flow field in a cyclone separator, operated within a temperature range of 293 K – 1373 K and a pressure range of 0.1 – 6.5 MPa, has been simulated using a modified Reynolds-stress model (RSM) on commercial software platform FLUENT 6.1. The computational results show that the temperature and pressure significantly influence the gas velocity vectors, especially on their tangential component, in the cyclone. The tangential velocity decreases with an increase in temperature and increases with an increase in pressure. This tendency of the decrease or increase, however, reduces gradually when the temperature is above 1000 K or the pressure goes beyond 1.0 MPa. The temperature and pressure have a relatively weak influence on the axial velocity profiles. The outer downward flow rate increases with a temperature increase, whereas it decreases with a pressure increase. The centripetal radial velocity is strong in the region of 0 – 0.25 below the vortex finder entrance, which is named as a short-cut flow zone in this study. Based on the simulation results, a set of correlations was developed to calculate the combined effects of temperature and pressure on the tangential velocity, the downward flow rate in the cyclone and the centripetal radial velocity in the short-cut flow region underneath the vortex finder.

Related Research