Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2019, Volume 13, Issue 1 doi: 10.1007/s11705-018-1714-y

Detoxification and concentration of corn stover hydrolysate and its fermentation for ethanol production

1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Chembrane Engineering & Technology, Inc., Tianjin 300308, China

Accepted: 2018-05-22 Available online: 2019-02-25

Next Previous

Abstract

Environmental and energy concerns have increased interest in renewable energy sources, particularly biofuels. Thus the fermentation of glucose from sulfuric acid-hydrolyzed corn stover for the production of bioethanol has been explored using a combined acid retardation and continuous-effect membrane distillation treatment process. This process resulted in the separation of the sugars and acids from the acid-catalyzed hydrolysate, the removal of most of the fermentation inhibitors from the hydrolysate and the concentration of the detoxified hydrolysate. The recovery rate of glucose from the sugar-acid mixture using acid retardation was greater than 99.12% and the sulfuric acid was completely recovered from the hydrolysate. When the treated corn stover hydrolysate, containing 100 g/L glucose, was used as a carbon source, 43.06 g/L of ethanol was produced with a productivity of 1.79 g/(L?h) and a yield of 86.31%. In the control experiment, where glucose was used as the carbon source these values were 1.97 g/(L?h) and 93.10% respectively. Thus the integration of acid retardation and a continuous-effect membrane distillation process are effective for the production of fuel ethanol from corn stover.

Related Research