Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2019, Volume 13, Issue 4 doi: 10.1007/s11705-019-1823-2

Fabrication of form stable NaCl-Al2O3 composite for thermal energy storage by cold sintering process

Birmingham Centre for Energy Storage, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK

Accepted: 2019-07-26 Available online: 2019-07-26

Next Previous

Abstract

A form stable NaCl-Al O (50-50 wt-%) composite material for high temperature thermal energy storage was fabricated by cold sintering process, a process recently applied to the densification of ceramics at low temperature ˂ 300°C under uniaxial pressure in the presence of small amount of transient liquid. The fabricated composite achieved as high as 98.65% of the theoretical density. The NaCl-Al O composite also retained the chloride salt without leakage after 30 heating-cooling cycles between 750°C–850°C together with a holding period of 24 h at 850°C. X-ray diffraction measurements indicated congruent solubility of the alumina in chloride salt, excellent compatibility of NaCl with Al O , and chemical stability at high temperature. Structural analysis by scanning electron microscope also showed limited grain growth, high density, uniform NaCl distribution and clear faceted composite structure without inter-diffusion. The latent heat storage density of 252.5 J/g was obtained from simultaneous thermal analysis. Fracture strength test showed high sintered strength around 5 GPa after 50 min. The composite was found to have fair mass losses due to volatilization. Overall, cold sintering process has the potential to be an efficient, safe and cost-effective strategy for the fabrication of high temperature thermal energy storage materials.

Related Research