Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2023, Volume 17, Issue 11 doi: 10.1007/s11705-023-2325-9

Enhancing the aromatic selectivity of cyclohexane aromatization by CO2 coupling

Received: 2023-02-10 Accepted: 2023-07-03 Available online: 2023-07-03

Next Previous

Abstract

Improving the aromatic selectivity in the alkane aromatization process is of great importance for its practical utilization but challenge to make because the high H/C ratio of alkanes would lead to a serious hydrogen transfer process and a large amount of light alkanes. Herein, CO2 is introduced into the cyclohexane conversion process on the HZSM-5 zeolite, which can improve the aromatic selectivity. By optimizing the reaction conditions, an improved aromatic (benzene, toluene, xylene, and C9+) selectivity of 48.2% can be obtained at the conditions of 2.7 MPa (CO2), 450 °C, and 1.7 h−1, which is better than that without CO2 (aromatic selectivity = 43.2%). In situ transmission Fourier transform infrared spectroscopy spectra illustrate that many oxygenated chemical intermediates (e.g., carboxylic acid, anhydride, unsaturated aldehydes/ketones or ketene) would be formed during the cyclohexane conversion process in the presence of CO2. 13C isotope labeling experimental results demonstrate that CO2 can enter into the aromatics through the formation of oxygenated chemical intermediates and thereby improve the aromatic selectivity. This study may open a green, economic, and promising way to improve the aromatic selectivity for alkane aromatization process.

Related Research