Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers in Energy >> 2009, Volume 3, Issue 2 doi: 10.1007/s11708-009-0029-6

Experimental study of critical flow of water at supercritical pressure

1. China Institute of Atomic Energy, Beijing 102413, China; 2. School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Available online: 2009-06-05

Next Previous

Abstract

Experimental studies of the critical flow of water were conducted under steady-state conditions with a nozzle 1.41 mm in diameter and 4.35 mm in length, covering the inlet pressure range of 22.1-26.8 MPa and inlet temperature range of 38-474°C. The parametric trend of the flow rate was investigated, and the experimental data were compared with the predictions of the homogeneous equilibrium model, the Bernoulli correlation, and the models used in the reactor safety analysis code RELAP5/MOD3.3. It is concluded that in the near or beyond pseudo-critical region, thermal-dynamic equilibrium is dominant, and at a lower temperature, choking does not occur. The onset of the choking condition is not predicted reasonably by the RELAP5 code.

Related Research