Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers in Energy >> 2019, Volume 13, Issue 3 doi: 10.1007/s11708-019-0635-x

Energy supply for water electrolysis systems using wind and solar energy to produce hydrogen: a case study of Iran

Industrial Engineering Department, Yazd University, Yazd 8915818411, Iran

Accepted: 2019-07-08 Available online: 2019-07-08

Next Previous

Abstract

Due to acute problems caused by fossil fuels that threaten the environment, conducting research on other types of energy carriers that are clean and renewable is of great importance. Since in the past few years hydrogen has been introduced as the future fuel, the aim of this study is to evaluate wind and solar energy potentials in prone areas of Iran by the Weibull distribution function (WDF) and the Angstrom-Prescott (AP) equation for hydrogen production. To this end, the meteorological data of solar radiation and wind speed recorded at 10 m height in the time interval of 3 h in a five-year period have been used. The findings indicate that Manjil and Zahedan with yearly wind and solar energy densities of 6004 (kWh/m ) and 2247 (kWh/m ), respectively, have the greatest amount of energy among the other cities. After examining three different types of commercial wind turbines and photovoltaic (PV) systems, it becomes clear that by utilizing one set of Gamesa G47 turbine, 91 kg/d of hydrogen, which provides energy for 91 car/week, can be produced in Manjil and will save about 1347 L of gasoline in the week. Besides, by installing one thousand sets of X21-345 PV systems in Zahedan, 20 kg/d of hydrogen, enough for 20 cars per week, can be generated and 296 L of gasoline can be saved. Finally, the RETScreen software is used to calculate the annual CO emission reduction after replacing gasoline with the produced hydrogen.

Related Research