Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers in Energy >> 2024, Volume 18, Issue 1 doi: 10.1007/s11708-023-0893-5

Surface modification by ligand growth strategy for dense copper bismuth film as photocathode to enhance hydrogen production activity

Received: 2023-03-30 Accepted: 2023-09-04 Available online: 2023-09-04

Next Previous

Abstract

Hydrogen production from photoelectrochemical (PEC) water splitting has been regarded as a promising way to utilize renewable and endless solar energy. However, semiconductor film grown on photoelectrode suffers from numerous challenges, leading to the poor PEC performance. Herein, a straightforward sol-gel method with the ligand-induced growth strategy was employed to obtain dense and homogeneous copper bismuthate photocathodes for PEC hydrogen evolution reaction. By various characterizations, it was found that the nucleation and surface growth of CuBi2O4 layer induced by 2-methoxyethanol ligand (2-CuBi2O4) demonstrated a decent crystallinity and coverage, as well as a large grain size and a low oxygen vacancy concentration, leading to the good ability of light absorption and carrier migration. Consequently, under simulated sunlight irradiation (AM1.5G, 100 mW/cm2), the 2-CuBi2O4 photocathode achieved an enhanced photocurrent density of −1.34 mA·cm−2 at 0.4 V versus the reversible hydrogen electrode and a promising applied bias photon-to-current efficiency of 0.586%. This surface modification by ligand growth strategy will shed light on the future design of advanced photoelectrodes for PEC water splitting.

Related Research