Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers in Energy >> 2024, Volume 18, Issue 1 doi: 10.1007/s11708-023-0894-4

Function-reversible facets enabling SrTiO3 nanocrystals for improved photocatalytic hydrogen evolution

Received: 2023-05-25 Accepted: 2023-09-07 Available online: 2023-09-07

Next Previous

Abstract

It has been widely reported that, for faceted nanocrystals, the two adjacent facets with different band levels contribute to promoted charge separation, and provide active sites for photocatalytic reduction and oxidation reaction, respectively. In such cases, only one family of facets can be used for photocatalytic hydrogen evolution. Herein, by using SrTiO3 nanocrystals enclosed by {023} and {001} facets as a model photocatalyst, this paper proposed a strategy to achieve the full-facets-utilization of the nanocrystals for photocatalytic hydrogen via chemically depositing Pt nanoparticles on all facets. The photo-deposition experiment of CdS provided direct evidence to demonstrate that the {023} facets which were responsible for photooxidation reaction can be function-reversed for photocatalytic hydrogen evolution after depositing Pt nanoparticles, together with the {001} facets. Thus, the full-facets-utilization led to a much-improved activity for photocatalytic hydrogen, in contrast to those SrTiO3 nanocrystals with only {001} facets deposited by Pt nanoparticles via a photo-deposition method.

Related Research