Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Structural and Civil Engineering >> 2019, Volume 13, Issue 4 doi: 10.1007/s11709-019-0516-8

Modeling of unconfined compressive strength of soil-RAP blend stabilized with Portland cement using multivariate adaptive regression spline

. Department of Civil Engineering, Sirjan University of Technology, Sirjan 78137-33385, Iran.. Department of Civil Engineering, Yazd University, Yazd 89195-741, Iran

Accepted: 2019-05-09 Available online: 2019-05-09

Next Previous

Abstract

The recycled layer in full-depth reclamation (FDR) method is a mixture of coarse aggregates and reclaimed asphalt pavement (RAP) which is stabilized by a stabilizer agent. For design and quality control of the final product in FDR method, the unconfined compressive strength of stabilized material should be known. This paper aims to develop a mathematical model for predicting the unconfined compressive strength (UCS) of soil-RAP blend stabilized with Portland cement based on multivariate adaptive regression spline (MARS). To this end, two different aggregate materials were mixed with different percentages of RAP and then stabilized by different percentages of Portland cement. For training and testing of MARS model, total of 64 experimental UCS data were employed. Predictors or independent variables in the developed model are percentage of RAP, percentage of cement, optimum moisture content, percent passing of #200 sieve, and curing time. The results demonstrate that MARS has a great ability for prediction of the UCS in case of soil-RAP blend stabilized with Portland cement ( is more than 0.97). Sensitivity analysis of the proposed model showed that the cement, optimum moisture content, and percent passing of #200 sieve are the most influential parameters on the UCS of FDR layer.

Related Research