Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Structural and Civil Engineering >> 2022, Volume 16, Issue 2 doi: 10.1007/s11709-022-0812-6

Dimensionality reduction and prediction of soil consolidation coefficient using random forest coupling with Relief algorithm

Available online: 2022-03-22

Next Previous

Abstract

The consolidation coefficient of soil (Cv) is a crucial parameter used for the design of structures leaned on soft soi. In general, the Cv is determined experimentally in the laboratory. However, the experimental tests are time-consuming as well as expensive. Therefore, researchers tried several ways to determine Cv via other simple soil parameters. In this study, we developed a hybrid model of Random Forest coupling with a Relief algorithm (RF-RL) to predict the Cv of soil. To conduct this study, a database of soil parameters collected from a case study region in Vietnam was used for modeling. The performance of the proposed models was assessed via statistical indicators, namely Coefficient of determination (R2), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE). The proposal models were constructed with four sets of soil variables, including 6, 7, 8, and 13 inputs. The results revealed that all models performed well with a high performance (R2 > 0.980). Although the RF-RL model with 13 variables has the highest prediction accuracy ( R2 = 0.9869), the difference compared with other models was negligible (i.e., R2 = 0.9824, 0.9850, 0.9825 for the cases with 6, 7, 8 inputs, respectively). Thus, it can be concluded that the hybrid model of RF-RL can be employed to predict Cv based on the basic soil parameters.

Related Research