Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Structural and Civil Engineering >> 2022, Volume 16, Issue 7 doi: 10.1007/s11709-022-0844-y

Axial compression tests and numerical simulation of steel reinforced recycled concrete short columns confined by carbon fiber reinforced plastics strips

Available online: 2022-10-20

Next Previous

Abstract

To research the axial compression behavior of steel reinforced recycled concrete (SRRC) short columns confined by carbon fiber reinforced plastics (CFRP) strips, nine scaled specimens of SRRC short columns were fabricated and tested under axial compression loading. Subsequently, the failure process and failure modes were observed, and load-displacement curves as well as the strain of various materials were analyzed. The effects on the substitution percentage of recycled coarse aggregate (RCA), width of CFRP strips, spacing of CFRP strips and strength of recycled aggregate concrete (RAC) on the axial compression properties of columns were also analyzed in the experimental investigation. Furthermore, the finite element model of columns which can consider the adverse influence of RCA and the constraint effect of CFRP strips was founded by ABAQUS software and the nonlinear parameter analysis of columns was also implemented in this study. The results show that the first to reach the yield state was the profile steel in the columns, then the longitudinal rebars and stirrups yielded successively, and finally RAC was crushed as well as the CFRP strips was also broken. The replacement rate of RCA has little effect on the columns, and with the substitution rate of RCA from 0 to 100%, the bearing capacity of columns decreased by only 4.8%. Increasing the CFRP strips width or decreasing the CFRP strips spacing could enhance the axial bearing capacity of columns, the maximum increase was 10.5% or 11.4%, and the ductility of columns was significantly enhanced. Obviously, CFRP strips are conducive to enhance the axial bearing capacity and deformation capacity of columns. On this basis, considering the restraint effect of CFRP strips and the adverse effects of RCA, the revised formulas for calculating the axial bearing capacity of SRRC short columns confined by CFRP strips were proposed.

Related Research