Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Structural and Civil Engineering >> 2023, Volume 17, Issue 5 doi: 10.1007/s11709-023-0937-2

Performance evaluation of low-rise infilled reinforced concrete frames designed by considering local effects on column shear demand

Received: 2022-02-26 Accepted: 2023-06-13 Available online: 2023-06-13

Next Previous

Abstract

The interactions between reinforced concrete (RC) frames and infill walls play an important role in the seismic response of frames, particularly for low-rise frames. Infill walls can increase the overall lateral strength and stiffness of the frame owing to their high strength and stiffness. However, local wall-frame interactions can also lead to increased shear demand in the columns owing to the compressive diagonal strut force from the inll wall, which can result in failure or in serious situations, collapse. In this study, the effectiveness of a design strategy to consider the complex infill wall interaction was investigated. The approach was used to design example RC frames with infill walls in locations with different seismicity levels in Thailand. The performance of these frames was assessed using nonlinear static, and dynamic analyses. The performance of the frames and the failure modes were compared with those of frames designed without considering the infill wall or the local interactions. It was found that even though the overall responses of the buildings designed with and without consideration of the local interaction of the infill walls were similar in terms the overall lateral strength, the failure modes were different. The proposed method can eliminate the column shear failure from the building. Finally, the merits and limitations of this approach are discussed and summarized.

Related Research