Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Structural and Civil Engineering >> 2024, Volume 18, Issue 3 doi: 10.1007/s11709-024-1057-3

Performance assessment of prefabricated vertical drains in mitigating soil reliquefaction subjected to repeated seismic events using shaking table experiments

Received: 2023-03-29 Accepted: 2024-05-27 Available online: 2024-05-27

Next Previous

Abstract

The use of prefabricated vertical drains (PVD) in liquefiable deposits is gaining attention due to enhanced drainage. However, investigations on PVD in mitigating re-liquefaction during repeated shaking events are not available. This study performed a series of shaking table experiments on untreated and PVD-treated specimens prepared with 40% and 60% relative density. Repeated sinusoidal loading was applied with an incremental peak acceleration of 0.1g, 0.2g, 0.3g, and 0.4g, at 5 Hz shaking frequency with 40 s duration. The performance of treated ground was evaluated based on the generation and dissipation of excess pore water pressure (EPWP), induced sand densification, subsidence, and cyclic stress ratio. In addition, the strain accumulated in fresh and exhumed PVD was investigated using geotextile tensile testing apparatus aided with digital image correlation. No evidence of pore pressure was reported up to 0.2g peak acceleration for 40% and 60% relative density specimens. The continuous occurrence of soil densification and drainage medium restrained and delayed the generation of EPWP and expedited the dissipation process. This study demonstrates PVD can mitigate re-liquefaction, without suffering from deterioration, when subjected to medium to high intense repeated shaking events.

Related Research