Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Environmental Science & Engineering >> 2010, Volume 4, Issue 1 doi: 10.1007/s11783-010-0010-y

Modeling and verifying chlorine decay and chloroacetic acid formation in drinking water chlorination

1.Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, China; 2.Department of Civil & Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Avenue, Urbana, IL 61801, USA;

Available online: 2010-03-05

Next Previous

Abstract

This study presents a phenomenological model that can be used by the water professionals to quantify chlorine decay and disinfection byproduct (DBP) formation in water. The kinetic model was developed by introducing the concept of limiting chlorine demand and extending an established reactive species approach. The limiting chlorine demand, which quantifies chlorine reactive natural organic matter (NOM) on an equivalent basis, was mathematically defined by the relation between ultimate chlorine residue and initial chlorine dose. It was found experimentally that NOM in water has limiting chlorine demand that increases with chlorine dose once the ultimate residue is established. These results indicated that the complex NOM has a unique ability to adjust chemically to the change in redox condition caused by the free chlorine. It is attributed mainly to the redundant functional groups that persist in heterogeneous NOM molecules. The results also demonstrated that the effect of chlorine dose on the rate of chlorine decay can be quantitatively interpreted with the limiting chlorine demand. The kinetic model developed was validated for chlorine decay and chloroacetic acid formation in finished drinking water.

Related Research