Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Environmental Science & Engineering >> 2011, Volume 5, Issue 2 doi: 10.1007/s11783-011-0320-8

Interaction and independence on methane oxidation of landfill cover soil among three impact factors: water, oxygen and ammonium

Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

Available online: 2011-06-05

Next Previous

Abstract

To understand the influence patterns and interactions of three important environmental factors, i.e. soil water content, oxygen concentration, and ammonium addition, on methane oxidation, the soils from landfill cover layers were incubated under full factorial parameter settings. In addition to the methane oxidation rate, the quantities and community structures of methanotrophs were analyzed to determine the methane oxidation capacity of the soils. Canonical correspondence analysis was utilized to distinguish the important impact factors. Water content was found to be the most important factor influencing the methane oxidation rate and Type II methanotrophs, and the optimum value was 15% (w/w), which induced methane oxidation rates 10- and 6- times greater than those observed at 5% (w/w) and 20% (w/w), respectively. Ambient oxygen conditions were more suitable for methane oxidation than 3% oxygen. The addition of of ammonium induced different effects on methane oxidation capacity when conducted at low or high water content. With regard to the methanotrophs, Type II was sensitive to the changes of water content, while Type I was influenced by oxygen content. Furthermore, the methanotrophic acidophile, , was detected in soils with a pH of 4.9, which extended their known living environments.

Related Research