Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Environmental Science & Engineering >> 2012, Volume 6, Issue 4 doi: 10.1007/s11783-012-0429-4

Immobilized

1. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China; 3. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservancy, Chengdu 610041, China

Available online: 2012-08-01

Next Previous

Abstract

To investigate the potential use of ( ) residue for Cd adsorption, poly alcohol Na alginate (PVA) was applied to immobilize it. The parameters including contact time, pH, adsorbent dosages, and coexisting metal ions were studied. The suitable pH for immobilized was 4–7 wider than that for raw (pH 6–7). In the presence of Pb concentration varying from 0 to 30 mg·L , the Cd adsorption ratios declined by 6.71% and 47.45% for immobilized and raw , respectively. While, with the coexisting ion Cu concentration varied from 0 to 30 mg·L , the Cd adsorption ratios declined by 12.97% and 50.56% for immobilized and raw , respectively. The Cd adsorption isotherms in single–metal and dual-metal solutions were analyzed by using Langmuir, Freundlich, and Dubinin–Radushkevich models. The Cd adsorption capacities ( ) in single-metal solution were 6.448 mg·L and 2.832 mg·L for immobilized and raw , respectively. The of immobilized were 1.850 mg Cd·g in Cd + Pb solution and 3.961 mg Cd·g in Cd + Cu solution, respectively. The Cd adsorption processes subjected to both adsorbents follow pseudo-second-order model. Mechanism study showed the functional group of was –OH, –NH, –CO, and PVA played an important role in metal adsorbing. Mining wastewater treatment test showed that PVA–SA-immobilized was effective in mixed pollutant treatment even for wastewater containing metal ions in very low concentration.

Related Research