Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Environmental Science & Engineering >> 2016, Volume 10, Issue 6 doi: 10.1007/s11783-016-0851-0

Life cycle assessment of low impact development technologies combined with conventional centralized water systems for the City of Atlanta, Georgia

. Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA. .. Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, 828 West Peachtree Street, Suite 320, Atlanta, GA 30332-0595, USA. .. ECOVIE, Rainwater Collection Systems, 4287 Club Drive N.E. Atlanta, GA 30319, USA. .. Crittenden and Associates, C-305, Building E, Wangjing High-tech Park, LizezhongEr Road, Chaoyang District, Beijing 100102, China

Available online: 2016-06-14

Next Previous

Abstract

Hybrid system of LID technologies and conventional system was examined. Bioretention areas, rainwater harvesting, and xeriscaping were considered. Technology feasibility was simulated for land use and population density. Synergistic effects of technologies were quantified in defined zones. Uncertainty test was conducted with pedigree matrix and Monte Carlo analysis. Low-impact development (LID) technologies, such as bioretention areas, rooftop rainwater harvesting, and xeriscaping can control stormwater runoff, supply non-potable water, and landscape open space. This study examines a hybrid system (HS) that combines LID technologies with a centralized water system to lessen the burden on a conventional system (CS). CS is defined as the stormwater collection and water supply infrastructure, and the conventional landscaping choices in the City of Atlanta. The study scope is limited to five single-family residential zones (SFZs), classified R-1 through R-5, and four multi-family residential zones (MFZs), classified RG-2 through RG-5. Population density increases from 0.4 (R-1) to 62.2 (RG-5) persons per 1,000 m . We performed a life cycle assessment (LCA) comparison of CS and HS using TRACI 2.1 to simulate impacts on the ecosystem, human health, and natural resources. We quantified the impact of freshwater consumption using the freshwater ecosystem impact (FEI) indicator. Test results indicate that HS has a higher LCA single score than CS in zones with a low population density; however, the difference becomes negligible as population density increases. Incorporating LID in SFZs and MFZs can reduce potable water use by an average of 50% and 25%, respectively; however, water savings are negligible in zones with high population density (i.e., RG-5) due to the diminished surface area per capita available for LID technologies. The results demonstrate that LID technologies effectively reduce outdoor water demand and therefore would be a good choice to decrease the water consumption impact in the City of Atlanta.

Related Research