Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Environmental Science & Engineering >> 2017, Volume 11, Issue 6 doi: 10.1007/s11783-017-0947-1

Impact of food to microorganism ratio and alcohol ethoxylate dosage on methane production in treatment of low-strength wastewater by a submerged anaerobic membrane bioreactor

. Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China.. Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan

Available online: 2017-05-11

Next Previous

Abstract

The effects of food to microorganism (F/M) ratio and alcohol ethoxylate (AE) dosage on the methane production potential were investigated in treatment of low-strength wastewater by a submerged anaerobic membrane bioreactor (SAnMBR). The fate of AE and its acute and/or chronic impact on the anaerobic microbes were also analyzed. The results indicated that AE had an inhibitory effect to methane production potential (lag-time depends on the AE dosage) and the negative effect attenuated subsequently and methane production could recover at F/M ratio of 0.088–0.357. VFA measurement proved that AE was degraded into small molecular organic acids and then converted into methane at lower F/M ratio (F/M<0.158). After long-term acclimation, anaerobic microbe could cope with the stress of AE by producing more EPS (extracellular polymeric substances) and SMP (soluble microbial products) due to its self-protection behavior and then enhance its tolerance ability. However, the methane production potential was considerably decreased when AE was present in wastewater at a higher F/M ratio of 1.054. Higher AE amount and F/M ratio may destroy the cell structure of microbe, which lead to the decrease of methane production activity of sludge and methane production potential.

Related Research