Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Environmental Science & Engineering >> 2017, Volume 11, Issue 6 doi: 10.1007/s11783-017-0976-9

Effects of Pd doping on N

. Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.. Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.. State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China

Available online:2017-08-01

Next Previous


N O is a powerful greenhouse gas and plays an important role in destructing the ozone layer. This present work investigated the effects of Pd doping on N O formation over Pt/BaO/Al O catalyst. Three types of catalysts, Pt/BaO/Al O , Pt/Pd mechanical mixing catalyst (Pt/BaO/Al O +Pd/Al O ) and Pt-Pd co-impregnation catalyst (Pt-Pd/BaO/Al O ) were prepared by incipient wetness impregnation method. These catalysts were first evaluated in NSR activity tests using H /CO as reductants and then carefully characterized by BET, CO chemisorption, CO-DRIFTs and H -TPR techniques. In addition, temperature programmed reactions of NO with H /CO were conducted to obtain further information about N O formation mechanism. Compared with Pt/BaO/Al O , (Pt/BaO/Al O +Pd/Al O ) produced less N O and more NH during NO storage and reduction process, while an opposite trend was found over (Pt-Pd/BaO/Al O +Al O ). Temperature programmed reactions of NO with H /CO results showed that Pd/Al O component in (Pt/BaO/Al O +Pd/Al O ) played an important role in NO reduction to NH , and the formed NH could reduce NO to N leading to a decrease in N O formation. Most of N O formed over (Pt-Pd/BaO/Al O +Al O ) was originated from Pd/BaO/Al O component. H -TPR results indicated Pd-Ba interaction resulted in more difficult-to-reduce PdO species over Pd/BaO/Al O , which inhibits the NO dissociation and thus drives the selectivity to N O in NO reduction.

Related Research