Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Environmental Science & Engineering >> 2020, Volume 14, Issue 6 doi: 10.1007/s11783-020-1280-7

Effects of hydraulic retention time on net present value and performance in a membrane bioreactor treating antibiotic production wastewater

1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2. Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
3. University of Chinese Academy of Sciences, Beijing 100049, China

Available online: 2020-07-03

Next Previous

Abstract

Abstract • The membrane bioreactor cost decreased by 38.2% by decreasing HRT from 72 h to 36 h. • Capital and operation costs contributed 62.1% and 37.9% to decreased costs. • The membrane bioreactor is 32.6% cheaper than the oxidation ditch for treatment. • The effluent COD also improved from 709.93±62.75 mg/L to 280±17.32 mg/L. • Further treatment also benefited from lower pretreatment investment. A cost sensitivity analysis was performed for an industrial membrane bioreactor to quantify the effects of hydraulic retention times and related operational parameters on cost. Different hydraulic retention times (72–24 h) were subjected to a flat-sheet membrane bioreactor updated from an existing 72 h oxidation ditch treating antibiotic production wastewater. Field experimental data from the membrane bioreactor, both full-scale (500 m3/d) and pilot (1.0 m3/d), were used to calculate the net present value (NPV), incorporating both capital expenditure (CAPEX) and operating expenditure. The results showed that the tank cost was estimated above membrane cost in the membrane bioreactor. The decreased hydraulic retention time from 72 to 36 h reduced the NPV by 38.2%, where capital expenditure contributed 24.2% more than operational expenditure. Tank construction cost was decisive in determining the net present value contributed 62.1% to the capital expenditure. The membrane bioreactor has the advantage of a longer lifespan flat-sheet membrane, while flux decline was tolerable. The antibiotics decreased to 1.87±0.33 mg/L in the MBR effluent. The upgrade to the membrane bioreactor also benefited further treatments by 10.1%–44.7% lower direct investment.

Related Research