Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Environmental Science & Engineering >> 2021, Volume 15, Issue 4 doi: 10.1007/s11783-020-1353-7

Stabilization of hexavalent chromium with pretreatment and high temperature sintering in highly contaminated soil

1. College of Architecture and Environment, Sichuan University, Chengdu 610065, China
2. Wuhan Economic & Technological Development Zone (Hannan) Urban Administration Bureau, Wuhan 430056, China
3. Geological Brigade of Sichuan Bureau of Geology & Mineral Resources Geological, Chengdu 611830, China
4. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China

Available online: 2020-10-22

Next Previous

Abstract

Abstract • Separate reduction and sintering cannot be effective for Cr stabilization. • Combined treatment of reduction and sintering is effective for Cr stabilization. • Almost all the Cr in the reduced soil is residual form after sintering at 1000°C. This study explored the effectiveness and mechanisms of high temperature sintering following pre-reduction with ferric sulfate (FeSO4), sodium sulfide (Na2S), or citric acid (C6H8O7) in stabilizing hexavalent chromium (Cr(VI)) in highly contaminated soil. The soil samples had an initial total Cr leaching of 1768.83 mg/L, and Cr(VI) leaching of 1745.13 mg/L. When FeSO4 or C6H8O7 reduction was followed by sintering at 1000°C, the Cr leaching was reduced enough to meet the Safety Landfill Standards regarding general industrial solid waste. This combined treatment greatly improved the stabilization efficiency of chromium because the reduction of Cr(VI) into Cr(III) decreased the mobility of chromium and made it more easily encapsulated in minerals during sintering. SEM, XRD, TG-DSC, and speciation analysis indicated that when the sintering temperature reached 1000°C, almost all the chromium in soils that had the pre-reduction treatment was transformed into the residual form. At 1000°C, the soil melted and promoted the mineralization of Cr and the formation of new Cr-containing compounds, which significantly decreased subsequent leaching of chromium from the soil. However, without reduction treatment, chromium continued to leach from the soil even after being sintered at 1000°C, possibly because the soil did not fully fuse and because Cr(VI) does not bind with soil as easily as Cr(III).

Related Research