Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2017, Volume 3, Issue 4 doi: 10.1016/J.ENG.2017.04.004

Development of CO2 Selective Poly(Ethylene Oxide)-Based Membranes: From Laboratory to Pilot Plant Scale

Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502, Germany

Accepted: 2017-06-23 Available online: 2017-08-30

Next Previous

Abstract

Membrane gas separation is one of the most promising technologies for the separation of carbon dioxide (CO2) from various gas streams. One application of this technology is the treatment of flue gases from combustion processes for the purpose of carbon capture and storage. For this application, poly(ethylene oxide)-containing block copolymers such as Pebax® or PolyActive™ polymer are well suited. The thin-film composite membrane that is considered in this overview employs PolyActive™ polymer as a selective layer material. The membrane shows excellent CO2 permeances of up to 4 m3(STP)·(m2·h·bar)−1 (1 bar= 105 Pa) at a carbon dioxide/nitrogen (CO2/N2) selectivity exceeding 55 at ambient temperature. The membrane can be manufactured reproducibly on a pilot scale and mounted into flat-sheet membrane modules of different designs. The operating performance of these modules can be accurately predicted by specifically developed simulation tools, which employ single-gas permeation data as the only experimental input. The performance of membranes and modules was investigated in different pilot plant studies, in which flue gas and biogas were used as the feed gas streams. The investigated processes showed a stable separation performance, indicating the applicability of PolyActive™ polymer as a membrane material for industrial-scale gas processing.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

References

[ 1 ] Sholl DS, Lively RP. Seven chemical separations to change the world. Nature 2016;532(7600):435–7 link1

[ 2 ] United Nations. Paris Agreement [Internet].Paris: United Nations Framework Convention on Climate Change. c2014 [cited 2017 Feb 14]. Available from: http://unfccc.int/meetings/paris_nov_2015/meeting/8926.php.

[ 3 ] Hawking S. This is the most dangerous time for our planet [Internet].London: Guardian News and Media Limited or its affiliated companies. c2017 [cited 2017 Feb 14]. Available from: https://www.theguardian.com/commentisfree/2016/dec/01/stephen-hawking-dangerous-time-planet-inequality.

[ 4 ] Notz RJ, T?nnies I, McCann N, Scheffknecht G, Hasse H. CO2 capture for fossil fuel fired power plants. Chemie Ingenieur Technik 2010;82(10):1639–53.German link1

[ 5 ] Leung DYC, Caramanna G, Maroto-Valer MM. An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 2014;39:426–43 link1

[ 6 ] Huang Y, Merkel TC, Baker RW. Pressure ratio and its impact on membrane gas separation processes. J Membr Sci 2014;463:33–40 link1

[ 7 ] NETL. 2016 CO2 capture technology project review meeting [Internet]. [cited 2017 Jul 17]. Available from: http://www.netl.doe.gov/events/conference-proceedings/2016/2016-co2-capture-technology-project-review-meeting#t3.

[ 8 ] Yampol’Skii YP, Shishatskii SM, Shantorovich VP, Antipov EM, Kuzmin NN, Rykov SV, et al.Transport characteristics and other physicochemical properties of aged poly(1-(trimethylsilyl)-1-propyne). J Appl Polym Sci 1993;48(11):1935–44 link1

[ 9 ] Harms S, R?tzke K, Faupel F, Chaukura N, Budd PM, Egger W, et al.Aging and free volume in a polymer of intrinsic microporosity (PIM-1). J Adhes 2012;88(7):608–19 link1

[10] Khan MM, Filiz V, Bengtson G, Shishatskiy S, Rahman MM, Lillepaerg J, et al.Enhanced gas permeability by fabricating mixed matrix membranes of functionalized multiwalled carbon nanotubes and polymers of intrinsic microporosity (PIM). J Membr Sci 2013;436:109–20. Erratum in: J Membr Sci 2015;476:610–1 link1

[11] Kim TJ, Vr?lstad H, Sandru M, H?gg MB. Separation performance of PVAm composite membrane for CO2 capture at various pH levels. J Membr Sci 2013;428:218–24 link1

[12] Hussain A, H?gg MB. A feasibility study of CO2 capture from flue gas by a facilitated transport membrane. J Membr Sci 2010;359(1–2):140–8 link1

[13] Liu J, Hou X, Park HB, Lin H. High-performance polymers for membrane CO2/N2 separation. Chemistry 2016;22(45):15980–90 link1

[14] Kuehne DL, Friedlander SK. Selective transport of sulfur dioxide through polymer membranes. 1. Polyacrylate and cellulose triacetate single-layer membranes. Ind Eng Chem Prod Res Dev 1980;19(4):609–16 link1

[15] Kawakami M, Iwanaga H, Hara Y, Iwamoto M, Kagawa S. Gas permeabilities of cellulose nitrate/poly(ethylene glycol) blend membranes. J Appl Polym Sci 1982;27(7):2387–93 link1

[16] Saha S, Chakma A. Separation of CO2 from gas mixtures with liquid membranes. Energy Convers Manage 1992;33(5–8):413–20 link1

[17] Chakma A. Separation of CO2 and SO2 from flue gas streams by liquid membranes. Energy Convers Manage 1995;36(6–9):405–10 link1

[18] Okamoto K, Umeo N, Okamyo S, Tanaka K, Kita H. Selective permeation of carbon dioxide over nitrogen through polyethyleneoxide-containing polyimide membranes. Chem Lett 1993;22(2):225–8 link1

[19] Bondar VI, Freeman BD, Pinnau I. Gas transport properties of poly(ether-b-amide) segmented block copolymers. J Polym Sci Pol Phys 2000;38(15):2051–62 link1

[20] Metz S, van de Ven WJC, Mulder MHV, Wessling M. Mixed gas water vapor/N2 transport in poly(ethylene oxide) poly(butylene terephthalate) block copolymers. J Membr Sci 2005;266(1–2):51–61 link1

[21] Lin H, Freeman BD. Materials selection guidelines for membranes that remove CO2 from gas mixtures. J Mol Struct 2005;739(1–3):57–74 link1

[22] Patel NP, Spontak RJ. Mesoblends of polyether block copolymers with poly(ethylene glycol). Macromolecules 2004;37(4):1394–402 link1

[23] Car A, Stropnik C, Yave W, Peinemann KV. PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. J Membr Sci 2008;307(1):88–95 link1

[24] Lillep?rg J, Georgopanos P, Shishatskiy S. Stability of blended polymeric materials for CO2 separation. J Membr Sci 2014;467:269–78 link1

[25] White LS, Wei X, Pande S, Wu T, Merkel TC. Extended flue gas trials with a membrane-based pilot plant at a one-ton-per-day carbon capture rate. J Membr Sci 2015;496:48–57 link1

[26] Merkel TC, Zhou M, Baker RW. Carbon dioxide capture with membranes at an IGCC power plant. J Membr Sci 2012;389:441–50 link1

[27] Car A, Stropnik C, Yave W, Peinemann KV. Tailor-made polymeric membranes based on segmented block copolymers for CO2 separation. Adv Funct Mater 2008;18(18):2815–23 link1

[28] Yave W, Car A, Wind J, Peinemann KV. Nanometric thin film membranes manufactured on square meter scale: Ultra-thin films for CO2 capture. Nanotechnology 2010;21(39):395301 link1

[29] Yave W, Car A, Funari SS, Nunes SP, Peinemann KV. CO2-philic polymer membrane with extremely high separation performance. Macromolecules 2010;43(1):326–33 link1

[30] Rahman MM, Lillep?rg J, Neumann S, Shishatskiy S, Abetz V. A thermodynamic study of CO2 sorption and thermal transition of PolyActive? under elevated pressure. Polymer 2016;93:132–41 link1

[31] Yave W, Car A. Polymeric membranes for post-combustion carbon dioxide (CO2) capture. In: Basile A, Nunes SP, editors Advanced membrane science and technology for sustainable energy and environmental applications. Cambridge: Woodhead Publishing; 2011. p. 160–83 link1

[32] Car A, Yave W, Peinemann KV, Stropnik C. Tailoring polymeric membrane based on segmented block copolymers for CO2 separation. In: Yampolskii Yu, Freeman B, editors Membrane gas separation.Chichester: John Wiley & Sons, Ltd.; 2010. p. 227–53 link1

[33] Lillep?rg J, Pohlman J, Rahman M, Brinkmann T, Shishatskiy S, Wind J. Membranmaterialentwicklung für CO2- Abtrennungsverfahren. Chemie Ingenieur Technik 2016;88(9):1273.German link1

[34] Scharnagl N, Buschatz H. Polyacrylonitrile (PAN) membranes for ultra- and microfiltration. Desalination 2001;139(1 – 3 ):191–8 link1

[35] Abetz V, Brinkmann T, Dijkstra M, Ebert K, Fritsch D, Ohlrogge K, et al.Developments in membrane research: From material via process design to industrial application. Adv Eng Mater 2006;8(5):328–58 link1

[36] Brinkmann T, Naderipour C, Pohlmann J, Wind J, Wolff T, Esche E, et al.Pilot scale investigations of the removal of carbon dioxide from hydrocarbon gas streams using poly(ethylene oxide)-poly(butylene terephthalate) PolyActiveTM thin film composite membranes. J Membr Sci 2015;489:237–47 link1

[37] Pohlmann J, Bram M, Wilkner K, Brinkmann T. Pilot scale separation of CO2 from power plant flue gases by membrane technology. Int J Greenh Gas Control 2016;53:56–64 link1

[38] Echt WI, Dortmundt DD, Malino HM. Fundamentals of membrane technology for CO2 removal from natural gas. In: Proceedings of the 52nd Laurance Reid Gas Conditioning Conference fundamentals manual; 2002 Feb 24–27; Norman, OK, USA. Norman: University of Oklahoma; 2002. p. 1–25.

[39] Baker RW. Membrane technology and applications.3rd ed. Chichester: John Wiley & Sons, Ltd.; 2012 link1

[40] Ohlrogge K, Wind J, Brinkmann T. Membranes for recovery of volatile organic compounds. In: Drioli E, Giorno L, editors Comprehensive membrane science and engineering .Oxford: Academic Press; 2010. p. 213–42 link1

[41] Brinkmann T, Pohlmann J, Withalm U, Wind J, Wolff T. Theoretical and experimental investigations of flat sheet membrane module types for high capacity gas separation applications. Chemie Ingenieur Technik 2013;85(8):1210–20 link1

[42] Notzke H, Brinkmann T, Wolff T, Zhao L, Luhr S. inventors; Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH, Forschungszentrum Jülich GmbH, assignee. Membranmodul . European Patent EP3072575 A1 .2015 Mar 25. German.

[43] Bird RB, Stewart WE, Lightfoot EN. Transport phenomena.New York: John Wiley & Sons, Ltd.; 1960.

[44] Marriott J, S?rensen E. A general approach to modelling membrane modules. Chem Eng Sci 2003;58(22):4975–90 link1

[45] Wolff T, Brinkmann T, Kerner M, Hindersin S. CO2 enrichment from flue gas for the cultivation of algae—A field test. Greenh Gas Sci Technol 2015;5(5):505–12 link1

[46] Efficient gas separation with SEPURAN? [Internet]. Essen: Evonik Industries AG. c2010 [cited 2017 Feb 13]. Available from: http://www.sepuran.com/product/sepuran/en/Pages/gas-separation.aspx.

[47] Shishatskiy S, Nistor C, Popa M, Nunes SP, Peinemann KV. Polyimide asymmetric membranes for hydrogen separation: Influence of formation conditions on gas transport properties. Adv Eng Mater 2006;8(5):390–7 link1

[48] Stünkel S, Drescher A, Wind J, Brinkmann T, Repke JU, Wozny G. Carbon dioxide capture for the oxidative coupling of methane process—A case study in mini-plant scale. Chem Eng Res Des 2011;89(8):1261–70 link1

[49] Franz A. Wasserstoff erzeugung mit Mikroalgen: Prozessstudien zur Dynamik von Wachstum, Produkterzeugung und Produktgasbehandlung [dissertation].Karlsruhe: Karlsruher Institut für Technologie; 2015. German.

Related Research