Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2017, Volume 3, Issue 4 doi: 10.1016/J.ENG.2017.04.012

Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts

a Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
b National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China

Accepted: 2017-03-31 Available online: 2017-08-30

Next Previous

Abstract

Fischer-Tropsch synthesis (FTS) is an increasingly important approach for producing liquid fuels and chemicals via syngas—that is, synthesis gas, a mixture of carbon monoxide and hydrogen—generated from coal, natural gas, or biomass. In FTS, dispersed transition metal nanoparticles are used to catalyze the reactions underlying the formation of carbon-carbon bonds. Catalytic activity and selectivity are strongly correlated with the electronic and geometric structure of the nanoparticles, which depend on the particle size, morphology, and crystallographic phase of the nanoparticles. In this article, we review recent works dealing with the aspects of bulk and surface sensitivity of the FTS reaction. Understanding the different catalytic behavior in more detail as a function of these parameters may guide the design of more active, selective, and stable FTS catalysts.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

References

[ 1 ] Schulz H. Short history and present trends of Fischer–Tropsch synthesis. Appl Catal A Gen 1999;186(1–2):3–12 link1

[ 2 ] Baliban RC, Elia JA, Weekman V, Floudas CA. Process synthesis of hybrid coal, biomass, and natural gas to liquids via Fischer–Tropsch synthesis, ZSM-5 catalytic conversion, methanol synthesis, methanol-to-gasoline, and methanol-to-olefins/distillate technologies. Comput Chem Eng 2012;47:29–56 link1

[ 3 ] Fischer F, Tropsch H. The preparation of synthetic oil mixtures (synthol) from carbon monoxide and hydrogen. Brennstoff Chem 1923;4:276–85.

[ 4 ] Filot IAW, van Santen RA, Hensen EJM. The optimally performing Fischer–Tropsch catalyst. Angew Chem 2014;126(47):12960–4. German link1

[ 5 ] Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH. Towards the computational design of solid catalysts. Nat Chem 2009;1(1):37–46 link1

[ 6 ] Zhou K, Li Y. Catalysis based on nanocrystals with well-defined facets. Angew Chem Int Ed 2012;51(3):602–13 link1

[ 7 ] Den Breejen JP, Radstake PB, Bezemer GL, Bitter JH, Fr?seth V, Holmen A, et al.On the origin of the cobalt particle size effects in Fischer–Tropsch catalysis. J Am Chem Soc 2009;131(20):7197–203 link1

[ 8 ] Fu Q, Li WX, Yao Y, Liu H, Su HY, Ma D, et al.Interface-confined ferrous centers for catalytic oxidation. Science 2010;328(5982):1141–4 link1

[ 9 ] Huo CF, Wu BS, Gao P, Yang Y, Li YW, Jiao H. The mechanism of potassium promoter: Enhancing the stability of active surfaces. Angew Chem Int Ed 2011;50(32):7403–6 link1

[10] Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH. Fischer–Tropsch synthesis: Support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl Catal A Gen 2002;233(1–2):263–81 link1

[11] Van Santen RA. Complementary structure sensitive and insensitive catalytic relationships. Acc Chem Res 2009;42(1):57–66 link1

[12] Torres Galvis HM, Bitter JH, Davidian T, Ruitenbeek M, Dugulan AI, de Jong KP. Iron particle size effects for direct production of lower olefins from synthesis gas. J Am Chem Soc 2012;134(39):16207–15 link1

[13] Enger BC, Holmen A. Nickel and Fischer–Tropsch synthesis. Catal Rev 2012;54(4):437–88 link1

[14] Valden M. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998;281(5383):1647–50 link1

[15] Bezemer GL, Bitter JH, Kuipers HP, Oosterbeek H, Holewijn JE, Xu X, et al.Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 2006;128(12):3956–64 link1

[16] Carballo JMG, Yang J, Holmen A, García-Rodríguez S, Rojas S, Ojeda M, et al.Catalytic effects of ruthenium particle size on the Fischer–Tropsch synthesis. J Catal 2011;284(1):102–8 link1

[17] Kellner CS, Bell AT. Effects of dispersion on the activity and selectivity of alumina-supported ruthenium catalysts for carbon monoxide hydrogenation. J Catal 1982;75(2):251–61 link1

[18] Iglesia E. Design, synthesis, and use of cobalt-based Fischer–Tropsch synthesis catalysts. Appl Catal A Gen 1997;161(1–2):59–78 link1

[19] Wang Z, Skiles S, Yang F, Yan Z, Goodman DW. Particle size effects in Fischer–Tropsch synthesis by cobalt. Catal Today 2012;181(1):75–81 link1

[20] Prieto G, Martínez A, Concepción P, Moreno-Tost R. Cobalt particle size effects in Fischer–Tropsch synthesis: Structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts. J Catal 2009;266(1):129–44 link1

[21] Herranz T, Deng X, Cabot A, Guo J, Salmeron M. Influence of the cobalt particle size in the CO hydrogenation reaction studied by in situ X-ray absorption spectroscopy. J Phys Chem B 2009;113(31):10721–7 link1

[22] Tuxen A, Carenco S, Chintapalli M, Chuang CH, Escudero C, Pach E, et al.Size-dependent dissociation of carbon monoxide on cobalt nanoparticles. J Am Chem Soc 2013;135(6):2273–8 link1

[23] Yang J, Tveten EZ, Chen D, Holmen A. Understanding the effect of cobalt particle size on Fischer–Tropsch synthesis: Surface species and mechanistic studies by SSITKA and kinetic isotope effect. Langmuir 2010;26(21):16558–67 link1

[24] Borg ?, Dietzel PD, Spjelkavik AI, Tveten EZ, Walmsley JC, Diplas S, et al.Fischer–Tropsch synthesis: Cobalt particle size and support effects on intrinsic activity and product distribution. J Catal 2008;259(2):161–4 link1

[25] Rane S, Borg Ø, Rytter E, Holmen A. Relation between hydrocarbon selectivity and cobalt particle size for alumina supported cobalt Fischer–Tropsch catalysts. Appl Catal A Gen 2012;437–8:10–7 link1

[26] Melaet G, Lindeman AE, Somorjai GA. Cobalt particle size effects in the Fischer–Tropsch synthesis and in the hydrogenation of CO2 studied with nanoparticle model catalysts on silica. Top Catal 2014;57(6–9):500–7 link1

[27] Dalla Betta RA, Piken AG, Shelef M. Heterogeneous methanation: Initial rate of CO hydrogenation on supported ruthenium and nickel. J Catal 1974;35(1):54–60 link1

[28] Iglesia E, Soled SL, Fiato RA. Fischer–Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity. J Catal 1992;137(1):212–24 link1

[29] Smith KJ, Everson RC. Fischer–Tropsch reaction studies with supported ruthenium catalysts: II. Effects of oxidative pretreatment at elevated temperatures. J Catal 1986;99(2):349–57 link1

[30] Kang J, Zhang S, Zhang Q, Wang Y. Ruthenium nanoparticles supported on carbon nanotubes as efficient catalysts for selective conversion of synthesis gas to diesel fuel. Angew Chem 2009;121(14):2603–6. German link1

[31] Xiao C, Cai Z, Wang T, Kou Y, Yan N. Aqueous-phase Fischer–Tropsch synthesis with a ruthenium nanocluster catalyst. Angew Chem 2008;120(4):758–61. German link1

[32] Quek XY, Guan Y, van Santen RA, Hensen EJ. Unprecedented oxygenate selectivity in aqueous-phase Fischer–Tropsch synthesis by ruthenium nanoparticles. ChemCatChem 2011;3(11):1735–8 link1

[33] Quek XY, Pestman R, van Santen RA, Hensen EJ. Structure sensitivity in the ruthenium nanoparticle catalyzed aqueous-phase Fischer–Tropsch reaction. Catal Sci Technol 2014;4(10):3510–23 link1

[34] Mabaso EI, van Steen E, Claeys M. Fischer–Tropsch synthesis on supported iron crystallites of different size. In: Proceedings of the DGMK/SCI-Conference "Synthesis Gas Chemistry”; 2006 Oct 4–6; Dresden, Germany. 2006. p. 93–100.

[35] Liu Y, Chen JF, Zhang Y. The effect of pore size or iron particle size on the formation of light olefins in Fischer–Tropsch synthesis. RSC Advances 2015;5(37):29002–7 link1

[36] Park JY, Lee YJ, Khanna PK, Jun KW, Bae JW, Kim YH. Alumina-supported iron oxide nanoparticles as Fischer–Tropsch catalysts: Effect of particle size of iron oxide. J Mol Catal Chem 2010;323(1–2):84–90 link1

[37] Sadeqzadeh M, Karaca H, Safonova O, Fongarland P, Chambrey S, Roussel P, et al.Identification of the active species in the working alumina-supported cobalt catalyst under various conditions of Fischer–Tropsch synthesis. Catal Today 2011;164(1):62–7 link1

[38] Mou X, Zhang B, Li Y, Yao L, Wei X, Su DS, et al.Rod-shaped Fe2O3 as an efficient catalyst for the selective reduction of nitrogen oxide by ammonia. Angew Chem Int Ed 2012;51(12):2989–93 link1

[39] Liu J, Su H, Sun D, Zhang B, Li W. Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC. J Am Chem Soc 2013;135(44):16284–7 link1

[40] Kusada K, Kobayashi H, Yamamoto T, Matsumura S, Sumi N, Sato K, et al.Discovery of face-centered cubic ruthenium nanoparticles: Facile size-controlled synthesis using the chemical reduction method. J Am Chem Soc 2013;135(15):5493–6 link1

[41] Jin H, Lee KW, Khi NT, An H, Park J, Baik H, et al.Rational synthesis of heterostructured M/Pt (M= Ru or Rh) octahedral nanoboxes and octapods and their structure-dependent electrochemical activity toward the oxygen evolution reaction. Small 2015;11(35):4462–8 link1

[42] Gu J, Guo Y, Jiang Y, Zhu W, Xu Y, Zhao Z, et al.Robust phase control through hetero-seeded epitaxial growth for face-centered cubic Pt@Ru nanotetrahedrons with superior hydrogen electro-oxidation activity. J Phys Chem C 2015;119(31):17697–706 link1

[43] Liu J, Li W. Theoretical study of crystal phase effect in heterogeneous catalysis. WIREs Comput Mol Sci 2016;6(5):571–83 link1

[44] Ducreux O, Lynch J, Rebours B, Roy M, Chaumette P. In situ characterisation of cobalt based Fischer-Tropsch catalysts: A new approach to the active phase. In: Fornasiero P, Cargnello M, editors Morphological, compositional, and shape control of materials for catalysis. Amsterdam: Elsevier; 1998. p. 125–30 link1

[45] Ducreux O, Rebours B, Lynch J, Roy-Auberger M, Bazin D. Microstructure of supported cobalt Fischer-Tropsch catalysts. Oil Gas Sci Technol 2009;64(1):49–62 link1

[46] Guo Y, Liu X, Azmat MU, Xu W, Ren J, Wang Y, et al.Hydrogen production by aqueous-phase reforming of glycerol over Ni-B catalysts. Int J Hydrogen Energy 2012;37(1):227–34 link1

[47] Song C, Sakata O, Kumara LSR, Kohara S, Yang A, Kusada K, et al.Size dependence of structural parameters in FCC and HCP Ru nanoparticles, revealed by Rietveld refinement analysis of high-energy X-ray diffraction data. Sci Rep 2016;6(1):31400 link1

[48] Ma H, Na C. Isokinetic temperature and size-controlled activation of ruthenium-catalyzed ammonia borane hydrolysis. ACS Catal 2015;5(3):1726–35 link1

[49] Fan Z, Zhang H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chem Soc Rev 2016;45(1):63–82 link1

[50] De la Peña O’Shea VA, Homs N, Fierro JLG, Ramírez de la Piscina P. Structural changes and activation treatment in a Co/SiO2 catalyst for Fischer–Tropsch synthesis. Catal Today 2006;114(4):422–7 link1

[51] Enache DI, Rebours B, Roy-Auberger M, Revel R. In situ XRD study of the influence of thermal treatment on the characteristics and the catalytic properties of cobalt-based Fischer–Tropsch catalysts. J Catal 2002;205(2):346–53 link1

[52] Gnanamani MK, Jacobs G, Shafer WD, Davis BH. Fischer–Tropsch synthesis: Activity of metallic phases of cobalt supported on silica. Catal Today 2013;215:13–7 link1

[53] Zhong L, Yu F, An Y, Zhao Y, Sun Y, Li Z, et al.Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 2016;538(7623):84–7 link1

[54] Liu J, Zhang B, Chen P, Su H, Li W. CO dissociation on face-centered cubic and hexagonal close-packed nickel catalysts: A first-principles study. J Phys Chem C 2016;120(43):24895–903 link1

[55] Pei Y, Liu J, Zhao Y, Ding Y, Liu T, Dong W, et al.High alcohols synthesis via Fischer–Tropsch reaction at cobalt metal/carbide interface. ACS Catal 2015;5(6):3620–4 link1

[56] Dong W, Liu J, Zhu H, Ding Y, Pei Y, Liu J, et al.Co–Co2C and Co–Co2C/AC catalysts for hydroformylation of 1-hexene under low pressure: Experimental and theoretical studies. J Phys Chem C 2014;118(33):19114–22 link1

[57] Hansen M, Anderko K. Constitution of binary alloys. 1st ed. Elliot RP, editor. New York: McGraw-Hill Book Company; 1965.

[58] Kitakami O, Sato H, Shimada Y, Sato F, Tanaka M. Size effect on the crystal phase of cobalt fine particles. Phys Rev B 1997;56(21):13849–54 link1

[59] Fischer N, van Steen E, Claeys M. Preparation of supported nano-sized cobalt oxide and FCC cobalt crystallites. Catal Today 2011;171(1):174–9 link1

[60] Braconnier L, Landrivon E, Clémençon I, Legens C, Diehl F, Schuurman Y. How does activation affect the cobalt crystallographic structure? An in situ XRD and magnetic study. Catal Today 2013;215:18–23 link1

[61] Prieto G, Concepción P, Murciano R, Martínez A. The impact of pre-reduction thermal history on the metal surface topology and site-catalytic activity of Co/SiO2 Fischer–Tropsch catalysts. J Catal 2013;302:37–48 link1

[62] Karaca H, Safonova OV, Chambrey S, Fongarland P, Roussel P, Griboval-Constant A, et al.Structure and catalytic performance of Pt-promoted alumina-supported cobalt catalysts under realistic conditions of Fischer–Tropsch synthesis. J Catal 2011;277(1):14–26 link1

[63] Wulff G. Zur frage der geschwindigkeit des wachsthums und der auflösung der krystallflächen. Zeitschrift Kristallographie Mineralogie 1901;34(1–6):449–530. German link1

[64] Ding Y, Zhu H, Wang T, Jiao G, Lu Y. Process for directly producing mixed linear α-alcohols having 1 to 18 carbon atoms from synthesis gas. United States patent US 7468396. 2008 Dec 23.

[65] Ding Y, Zhu H, Wang T, Jiao G, Lu Y. Activated carbon supported cobalt based catalyst for directly converting of synthesis gas to mixed linearα-alcohols and paraffins. United States patent US 7670985. 2010 Mar 2.

[66] Volkova GG, Yurieva TM, Plyasova LM, Naumova MI, Zaikovskii V. Role of the Cu–Co alloy and cobalt carbide in higher alcohol synthesis. J Mol Catal Chem 2000;158(1):389–93 link1

[67] Lebarbier VM, Mei D, Kim DH, Andersen A, Male JL, Holladay JE, et al.Effects of La2O3 on the mixed higher alcohols synthesis from syngas over Co catalysts: A combined theoretical and experimental study. J Phys Chem C 2011;115(35):17440–51 link1

[68] Abo-Hamed EK, Pennycook T, Vaynzof Y, Toprakcioglu C, Koutsioubas A, Scherman OA. Highly active metastable ruthenium nanoparticles for hydrogen production through the catalytic hydrolysis of ammonia borane. Small 2014;10(15):3145–52 link1

[69] AlYami NM, LaGrow AP, Joya KS, Hwang J, Katsiev K, Anjum DH, et al.Tailoring ruthenium exposure to enhance the performance of FCC platinum@ruthenium core-shell electrocatalysts in the oxygen evolution reaction. Phys Chem Chem Phys 2016;18(24):16169–78 link1

[70] Yao Y, He DS, Lin Y, Feng X, Wang X, Yin P, et al.Modulating FCC and HCP ruthenium on the surface of palladium–copper alloy through tunable lattice mismatch. Angew Chem 2016;128(18):5591–5. German link1

[71] Zhao M, Figueroa-Cosme L, Elnabawy AO, Vara M, Yang X, Roling LT, et al.Synthesis and characterization of Ru cubic nanocages with a face-centered cubic structure by templating with Pd nanocubes. Nano Lett 2016;16(8):5310–7 link1

[72] Li W, Liu J, Gu J, Zhou W, Yao S, Si R, et al.Chemical insights into the design and development of face-centered cubic ruthenium catalysts for Fischer–Tropsch synthesis. J Am Chem Soc 2017;139(6):2267–76 link1

[73] De Smit E, Cinquini F, Beale AM, Safonova OV, van Beek W, Sautet P, et al.Stability and reactivity of ε-χ-θ iron carbide catalyst phases in Fischer–Tropsch synthesis: Controlling μC. J Am Chem Soc 2010;132(42):14928–41 link1

[74] Niemantsverdriet JW, van der Kraan AM, van Dijk WM, van der Baan HS. Behavior of metallic iron catalysts during Fischer–Tropsch synthesis studied with M?ssbauer spectroscopy, X-ray diffraction, carbon content determination, and reaction kinetic measurements. J Phys Chem 1980;84(25):3363–70 link1

[75] Kuei CK, Lee MD. Temperature-programmed reaction of pre-adsorbed CO on iron catalyst: New experimental evidence for competition model. J Mol Catal 1991;65(3):293–305 link1

[76] Bukur DB, Nowicki L, Manne RK, Lang X. Activation studies with a precipitated iron catalyst for Fischer–Tropsch synthesis: II. Reaction studies. J Catal 1995;155(2):366–75 link1

[77] Amelse JA, Butt JB, Schwartz LH. Carburization of supported iron synthesis catalysts. J Phys Chem 1978;82(5):558–63 link1

[78] Bukur DB, Okabe K, Rosynek MP, Li C, Wang D, Rao K, et al.Activation studies with a precipitated iron catalyst for Fischer–Tropsch synthesis: I. Characterization studies. J Catal 1995;155(2):353–65 link1

[79] Badani MV, Delgass WN. The active phase of iron catalysts for acetonitrile synthesis. J Catal 1999;187(2):506–17 link1

[80] Mansker LD, Jin Y, Bukur DB, Datye AK. Characterization of slurry phase iron catalysts for Fischer–Tropsch synthesis. Appl Catal A Gen 1999;186(1–2):277–96 link1

[81] Herranz T, Rojas S, Pérez-Alonso FJ, Ojeda M, Terreros P, Fierro JLG. Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas. J Catal 2006;243(1):199–211 link1

[82] Yang C, Zhao H, Hou Y, Ma D. Fe5C2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer–Tropsch synthesis. J Am Chem Soc 2012;134(38):15814–21 link1

[83] Zhao S, Liu X, Huo C, Li Y, Wang J, Jiao H. Determining surface structure and stability of ε-Fe2C, χ-Fe5C2, θ-Fe3C and Fe4C phases under carburization environment from combined DFT and atomistic thermodynamic studies. Catal Struct React 2015;1(1):44–60 link1

[84] Yang Q, Fu X, Jia C, Ma C, Wang X, Zeng J, et al.Structural determination of catalytically active subnanometer iron oxide clusters. ACS Catal 2016;6(5):3072–82 link1

[85] Dry M. FT catalysts. In: Steynberg A, Dry M, editors Fischer–Tropsch technology. Amsterdam: Elsevier; 2004. p. 533–600 link1

[86] Rytter E, Skagseth TH, Eri S, Sj?stad AO. Cobalt Fischer–Tropsch catalysts using nickel promoter as a rhenium substitute to suppress deactivation. Ind Eng Chem Res 2010;49(9):4140–8 link1

[87] Illy S, Tillement O, Machizaud F, Dubois J, Massicot F, Fort Y, et al.First direct evidence of size-dependent structural transition in nanosized nickel particles. Philos Mag A 1999;79(5):1021–31 link1

[88] Hemenger P, Weik H. On the existence of hexagonal nickel. Acta Cryst 1965;19:690–1 link1

[89] Mi Y, Yuan D, Liu Y, Zhang J, Xiao Y. Synthesis of hexagonal close-packed nanocrystalline nickel by a thermal reduction process. Mater Chem Phys 2005;89(2–3):359–61 link1

[90] Han M, Liu Q, He J, Song Y, Xu Z, Zhu J. Controllable synthesis and magnetic properties of cubic and hexagonal phase nickel nanocrystals. Adv Mater 2007;19(8):1096–100 link1

[91] Lahiri A, Das R. Synthesis of face-centered cubic and hexagonal closed-packed nickel using ionic liquids. J Appl Electrochem 2010;40(11):1991–5 link1

[92] Lahiri A, Das R, Reddy RG. Electrochemical synthesis of hexagonal closed-pack nickel: A hydrogen storage material. J Power Sources 2010;195(6):1688–90 link1

[93] Lahiri A, Tadisina Z. Synthesis, thermodynamic and magnetic properties of pure hexagonal close-packed nickel. Mater Chem Phys 2010;124(1):41–3 link1

[94] Bolokang AS, Phasha MJ. Novel synthesis of metastable HCP nickel by water quenching. Mater Lett 2011;65(1):59–60 link1

[95] Kotoulas A, Gjoka M, Simeonidis K, Tsiaoussis I, Angelakeris M, Kalogirou O, et al.The role of synthetic parameters in the magnetic behavior of relative large HCP Ni nanoparticles. J Nanopart Res 2011;13(5):1897–908 link1

[96] Guo Y, Azmat MU, Liu X, Ren J, Wang Y, Lu G. Controllable synthesis of hexagonal close-packed nickel nanoparticles under high nickel concentration and its catalytic properties. J Mater Sci 2011;46(13):4606–13 link1

[97] Bengaard H, N?rskov JK, Sehested J, Clausen BS, Nielsen LP, Molenbroek AM, et al.Steam reforming and graphite formation on Ni catalysts. J Catal 2002;209(2):365–84 link1

[98] Engbæk J, Lytken O, Nielsen JH, Chorkendorff I. CO dissociation on Ni: The effect of steps and of nickel carbonyl. Surf Sci 2008;602(3):733–43 link1

[99] Van Ho S, Harriott P. The kinetics of methanation on nickel catalysts. J Catal 1980;64(2):272–83 link1

[100] Andersson MP, Abild-Pedersen F, Remediakis IN, Bligaard T, Jones G, Engbæk J, et al.Structure sensitivity of the methanation reaction: H2-induced CO dissociation on nickel surfaces. J Catal 2008;255(1):6–19 link1

Related Research