Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2019, Volume 5, Issue 5 doi: 10.1016/j.eng.2019.08.002

Environmental Information: Systems Paving the Path for Digitally Facilitated Water Management (Water 4.0)

a Department of Environmental Informatics, Helmholtz Center for Environmental Research (UFZ), Leipzig 04318, Germany
b Applied Environmental Systems Analysis, Technische Universität Dresden, Dresden 01069, Germany
UN Environment–Tongji Institute of Environment for Sustainable Development & College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
d Department for Ecological and Environmental Informatics, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 1000101, China
e Sino-German Research Center for Environmental Information Science (RCEIS), Leipzig 04318, Germany

Available online: 2019-08-12

Next Previous

Figures

Fig.1

Fig.2

Fig.3

Fig.4

Fig.5

References

[ 1 ] Kunkel R, Sorg J, Eckardt R, Kolditz O, Rink K, Vereecken H. TEODOOR: a distributed geodata infrastructure for terrestrial observation data. Environ Earth Sci 2013;69(2):507–21. link1

[ 2 ] Wollschläger U, Attinger S, Borchardt D, Brauns M, Cuntz M, Dietrich P, et al. The Bode hydrological observatory: a platform for integrated, interdisciplinary hydro-ecological research within the TERENO Harz/Central German Lowland Observatory. Environ Earth Sci 2017;76(1):29. link1

[ 3 ] Vine MF, Degnan D, Hanchette C. Geographic information systems: their use in environmental epidemiologic research. Environ Health Perspect 1997;105 (6):598–605. link1

[ 4 ] Nuckols JR, Ward MH, Jarup L. Using geographic information systems for exposure assessment in environmental epidemiology studies. Environ Health Perspect 2004;112(9):1007–15. link1

[ 5 ] Kingston R, Carver S, Evans A, Turton I. Web-based public participation geographical information systems: an aid to local environ-mental decisionmaking. Comput Environ Urban Syst 2000;24(2):109–25. link1

[ 6 ] Kerschberg L. Expert database systems: knowledge/data management environments for intelligent information-systems. Inf Syst 1990;15 (1):151–60. link1

[ 7 ] European Commission. Communication from the commission to the council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions—towards a shared environmental information system (SEIS). Technical report. Brussels: European Commission; 2008. link1

[ 8 ] Gu S, Fang C, Wang Y. Virtual geographic environment for WATLAC hydrological model integration. In: Proceedings of the 25th International Conference on Geoinformatics; 2017 Aug 2–4; New York, NY, USA; 2017.

[ 9 ] Melville NP. Information systems innovation for environmental sustainability. MIS Quart Manage Inf Syst 2010;34(1):1–21. link1

[10] Zhang B, Carter J. FORAGE—an online system for generating and delivering property-scale decision support information for grazing land and environmental management. Comput Electron Agric 2018;150:302–11. link1

[11] Fatehian S, Jelokhani-Niaraki M, Kakroodi AA, Dero QY, Samany NN. A volunteered geographic information system for managing environmental pollution of coastal zones: a case study in Nowshahr, Iran. Ocean Coast Manage 2018;163:54–65. link1

[12] Meiryani M, Susanto A, Warganegara DL. The issues influencing of environmental accounting information systems: an empirical investigation of SMEs in Indonesia. Inter J Energy Econom Policy 2019;9(1):282–90. link1

[13] Fitrios R, Susanto A, Soemantri R, Suharman H. The influence of environmental uncertainty on the accounting information system quality and its impact on the accounting information quality. J Theo Appl Inform Technol 2018;96 (21):7164–75. link1

[14] Aggestam F. Setting the stage for a shared environmental information system. Environ Sci Policy 2019;92:124–32. link1

[15] Jung E, Jung EJ. Service-oriented architecture of environmental information systems to forecast the impacts of natural disasters in Korea. J Enterp Inf Manag 2019;32(1):16–35. link1

[16] Khosrow-Pour M. Environmental information systems: concepts, methodologies, tools, and applications. Hershey: IGI Publishing; 2018. link1

[17] Sun Y, Xu Y. Thinking on the trend of environmental information system. IOP Conf Series Mater Sci Eng 2018;439(3):032064. link1

[18] Aronczyk M. Environment 1.0: infoterra and the making of environmental information. N Media Soc 2018;20(5):1832–49. link1

[19] Su T, Cao Z, Lv Z, Liu C, Li X. Multi-dimensional visualization of large-scale marine hydrological environ-mental data. Adv Eng Softw 2016;95:7–15. link1

[20] Lin H, Batty M, Jørgensen SE, Fu B, Konecny M, Voinov A, et al. Virtual environments begin to embrace process-based geographic analysis. Trans GIS 2015;19(4):493–8. link1

[21] Chen M, Lin H, Kolditz O, Chen C. Developing dynamic virtual geographic environments (VGEs) for geographic research. Environ Earth Sci 2015;74 (10):6975–80. link1

[22] Rink K, Fischer T, Selle B, Kolditz O. A data exploration framework for validation and setup of hydrological models. Environ Earth Sci 2013;69 (2):469–77. link1

[23] Bilke L, Fischer T, Helbig C, Krawczyk C, Nagel T, Naumov D, et al. TESSIN VISLab—laboratory for scientific visualization. Environ Earth Sci 2014;72 (10):3881–99. link1

[24] Helbig C, Bilke L, Bauer HS, Böttinger M, Kolditz O. MEVA—an interactive visualization application for validation of multifaceted meteorological data with multiple 3D devices. PLoS ONE 2015;10(4):e0123811. link1

[25] Lei T, Liang X, Mascaro G, Luo W, White D, Westerhoff P, et al. An interactive web-based geovisual analytics tool to explore water scarcity in Niger River Basin. In: Middel A, Rink K, Weber GH, editors. Workshop on visualisation in environmental sciences. Geneva: The Eurographics Association; 2015. link1

[26] Marbouti M, Bhaskar R, Zahra SHA, Anslow C, Jackson L, Maurer F. WaterVis: geovisual analytics for exploring hydrological data. Berlin: Springer; 2018. link1

[27] Rink K, Chen C, Bilke L, Liao Z, Rinke K, Frassl M, et al. Virtual geographic environments for water pollution control. Int J Digit Earth 2018;11 (4):397–407. link1

[28] Water Sedlak D. Water 4.0: the past, present, and future of the world’s most vital resource. New Haven: Yale University Press; 2014. link1

[29] Schaffer C, Vestner R, Bufler R, Werner U, Ziemer C. Wasser 4.0. Report. Berlin: German Water Partnership; 2017. German.

[30] Abdelhafidh M, Fourati M, Fourati LC, Abidi A. Remote water pipeline monitoring system IoT-based architecture for new industrial era 4.0. In: Proceedings of the 14th International Conference on Computer Systems and Applications; 2017 Oct 30–Nov 3; Hammamet, Tunisia; 2017.

[31] Baikousis B, Meyer H. IFAT 2018 shows the way to water management 4.0. Wasserwirtschaft 2018;108(5):50–1. link1

[32] Sachse A, Liao Z, Hu W, Dai X, Kolditz O, editors. Managing water resources for urban catchments: Chaohu. Heidelberg: Springer; 2019. link1

[33] Yue T, Nixdorf E, Zhou C, Xu B, Zhao N, Fan Z, editors. Poyang Lake Basin. Heidelberg: Springer; 2019. link1

[34] Zehner B, Watanabe N, Kolditz O. Visualization of gridded scalar data with uncertainty in geosciences. Comput Geosci 2010;36(10):1268–75. link1

[35] AMC—Analytik & Messtechnik GmbH Chemnitz [Internet]. Chemnitz: AMC; [cited 2019 May 15]. Available from: https://www.amc-systeme.de. link1

[36] WISUTEC Umwelttechnik GmbH [Internet]. Chemnitz: WISUTEC Umwelttechnik GmbH; [cited 2019 May 15]. Available from: https://www. wisutec.de/. link1

[37] Visualization Center [Internet]. Leipzig: Helmholtz Center for Environmental Research (UFZ); [cited 2019 May 15]. Available from: www.ufz.de/vislab. link1

[38] Rink K, Bilke L, Kolditz O. Visualisation strategies for environmental modelling data. Environ Earth Sci 2014;72(10):3857–68. link1

[39] Helbig C, Bauer HS, Rink K, Wulfmeyer V, Frank M, Kolditz O. Concept and workflow for 3D visualization of atmospheric data in a virtual reality environment for analytical approaches. Environ Earth Sci 2014;72 (10):3767–80. link1

[40] Unity Technologies [Internet]. Unity Technologies; [cited 2019 May 15]. Available from: https://unity3d.com. link1

[41] Rink K, Nixdorf E, Zhou C, Hillmann M, Bilke L. A virtual geographic environment for multi-compartment water and solute dynamics in large catchments. Technical report. Leipzig: Helmholtz Center for Environmental Research (UFZ); 2019. link1

[42] Du Y, Peng W, Wang S, Liu X, Chen C, Liu C, et al. Modeling of water quality evolution and response with the hydrological regime changes in Poyang Lake. Environ Earth Sci 2018;77(7):265. link1

[43] Wang J, Chen E, Li G, Zhang L, Cao X, Zhang Y, et al. Spatial and temporal variations of suspended solid concentrations from 2000 to 2013 in Poyang Lake, China. Environ Earth Sci 2018;77(16):590. link1

[44] Yan C, Rink K, Bilke L, Nixdorf E, Yue T, Kolditz O. Virtual geographical environment-based environmental information system for Poyang Lake Basin. In: Chinese water systems: Poyang Lake Basin. Heidelberg: Springer; 2019. p. 293–308.

[45] OpenGeoSys [Internet]. Leipzig: Helmholtz Center for Environmental Research (UFZ); [cited 2019 May 15]. Available from: www.opengeosys.org. link1

[46] Major M, Poulsen SE, Balling N. A numerical investigation of combined heat storage and extraction in deep geothermal reservoirs. Geothermal Energy 2018;6:1. link1

[47] Chavot P, Heimlich C, Masseran A, Serrano Y, Zoungrana J, Bodin C. Social shaping of deep geothermal projects in Alsace: politics, stakeholder attitudes and local democracy. Geothermal Energy 2018;6:26. link1

[48] Michalski A, Klitzsch N. Temperature sensor module for groundwater flow detection around borehole heat exchangers. Geothermal Energy 2018;6:15. link1

[49] Kalbacher T, Delfs JO, Shao H, Wang W, Walther M, Samaniego L, et al. The IWAS-ToolBox: software coupling for an integrated water resources management. Environ Earth Sci 2012;65(5):1367–80. link1

[50] Walther M, Bilke L, Delfs JO, Graf T, Grundmann J, Kolditz O, et al. Assessing the saltwater remediation potential of a three-dimensional, heterogeneous, coastal aquifer system: model verification, application and visualization for transient density-driven seawater intrusion. Environ Earth Sci 2014;72 (10):3827–37. link1

[51] Kalbacher T, Mettier R, McDermott C, Wang W, Kosakowski G, Taniguchi T, et al. Geometric modelling and object-oriented software concepts applied to a heterogeneous fractured network from the Grimsel rock laboratory. Computat Geosci 2007;11(1):9–26. link1

[52] Chen C, Börnick H, Cai Q, Dai X, Jähnig SC, Kong Y, et al. Challenges and opportunities of German–Chinese cooperation in water science and technology. Environ Earth Sci 2015;73(8):4861–71. link1

Related Research