Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2020, Volume 6, Issue 6 doi: 10.1016/j.eng.2019.08.019

The Durability of Alkali-Activated Materials in Comparison with Ordinary Portland Cements and Concretes: A Review

a Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, China
b Key Laboratory for Green and Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha 410082, China
c Jiangsu Subote New Materials Ltd. Co., Nanjing 211103, China

Received: 2019-06-09 Revised: 2019-07-25 Accepted: 2019-08-12 Available online: 2020-05-16

Next Previous

Abstract

China is the largest producer and user of ordinary Portland cement (OPC), and the rapid growth of infrastructure development demands more sustainable building materials for concrete structures. Alkaliactivated materials (AAMs) are a new type of energy-saving and environmentally friendly building material with a wide range of potential applications. This paper compares the durability of AAMs and OPCbased materials under sulfate attack, acid corrosion, carbonation, and chloride penetration. Different AAMs have shown distinct durability properties due to different compositions being formed when different raw materials are used. According to the calcium (Ca) concentration of the raw materials, this paper interprets the deterioration mechanisms of three categories of AAMs: calcium-free, low-calcium, and calcium-rich. Conflicts found in the most recent research are highlighted, as they raise concerns regarding the consistence and long-term properties of AAMs. Nevertheless, AAMs show better durability performances than OPC-based materials in general.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

References

[ 1 ] Gao TM, Shen L, Shen M, Liu LT, Chen FN, Gao L. Evolution and projection of CO2 emissions for China’s cement industry from 1980 to 2020. Renew Sust Energ Rev 2017;74:522–37. link1

[ 2 ] Davidovits J. Geopolymers of the first generation: siliface-process. Geopolymer 1988;1:49–67. link1

[ 3 ] Davidovits J. Geopolymers and geopolymeric materials. Therm Anal Calorim 1989;35(2):429–41. link1

[ 4 ] Palomo A, Grutzeck MW, Blanco MT. Alkali-activated fly ashes: a cement for the future. Cement Concr Res 1999;29(8):1323–9. link1

[ 5 ] Van Deventer JSJ, Provis JL, Duxson P. Technical and commercial progress in the adoption of geopolymer cement. Miner Eng 2012;29:89–104. link1

[ 6 ] Mehta A, Siddique R. An overview of geopolymers derived from industrial byproducts. Constr Build Mater 2016;127:183–98. link1

[ 7 ] Singh B, Ishwarya G, Gupta M, Bhattacharyya SK. Geopolymer concrete: a review of some recent developments. Constr Build Mater 2015;85:78–90. link1

[ 8 ] Provis JL, Palomo A, Shi CJ. Advances in understanding alkali-activated materials. Cement Concr Res 2015;78:110–25. link1

[ 9 ] Roy DM. Alkali-activated cements opportunities and challenges. Cement Concr Res 1999;29(2):249–54. link1

[10] Agrawal US, Wanjari SP, Naresh DN. Characteristic study of geopolymer fly ash sand as a replacement to natural river sand. Constr Build Mater 2017;150:681–8. link1

[11] Provis JL, Van Deventer JSJ. Geopolymerisation kinetics. 1. In situ energydispersive X-ray diffractometry. Chem Eng Sci 2007;62(9):2309–17. link1

[12] Nikolov K, Rostovsky I, Nugteren H. Geopolymer materials based on natural zeolite. Case Stud Constr Mater 2017;6:198–205. link1

[13] Komnitsas K, Zaharaki D. Geopolymerisation: a review and prospects for the minerals industry. Miner Eng 2007;20(14):1261–77. link1

[14] Zhang ZH, Zhu HJ, Zhou CH, Wang H. Geopolymer from kaolin in China: an overview. Appl Clay Sci 2016;119:31–41. link1

[15] Luukkonen T, Abdollahnejad Z, Yliniemi J, Kinnunen P, Illikainen M. One-part alkali-activated materials: a review. Cement Concr Res 2018;103:21–34. link1

[16] Papa E, Medri V, Amari S, Manaud J, Benito P, Vaccari A, et al. Zeolitegeopolymer composite materials: production and characterization. J Clean Prod 2018;171:76–84. link1

[17] Belmokhtar N, Ammari M, Brigui J, Allal LB. Comparison of the microstructure and the compressive strength of two geopolymers derived from metakaolin and an industrial sludge. Constr Build Mater 2017;146:621–9. link1

[18] Provis JL. Alkali-activated materials. Cement Concr Res 2018;114:40–8. link1

[19] Fan F, Liu Z, Xu G, Peng H, Cai C. Mechanical and thermal properties of fly ash based geopolymers. Constr Build Mater 2018;160:66–81. link1

[20] Zhang YJ, Yang MY, Kang L, Zhang L, Zhang K. Research progresses of new type alkali-activated cementitious material catalyst. J Inorg Mater 2016;31 (3):225–33. Chinese. link1

[21] Zhang ZH. Performance and reaction mechanism of a metakaolin based inorganic geopolymer [dissertation]. Nanjing: Nanjing University of Technology; 2010. Chinese.

[22] Adamiec P, Benezet JC, Benhassaine A. Pozzolanic reactivity of silicoaluminous fly ash. Particuology 2008;6(2):93–8. link1

[23] Lothenbach B, Scrivener K, Hooton RD. Supplementary cementitious materials. Cement Concr Res 2011;41(12):1244–56. link1

[24] Khatib JM. Sustainability of construction materials. London: Woodhead Publishing Limited and CRC Press; 2009. link1

[25] Wang X, Yan BL, Liu C, Jiang LZ, Liu T. Complex calcium and silicatealuminates industry wastes combined active phosphorous slag. J B Univ Technol 2009;35(9):112–20. Chinese. link1

[26] Chen M, Sun ZP, Liu JS. State of the art review on activating techniques and mechanism of phosphorus slag. Mater Rev 2013;27(21):112–6. Chinese. link1

[27] Peng XQ, Liu C, Li S, Jiang Y, Zeng L. Research on the setting and hardening performance of alkali-activated steel slag-slag based cementitious materials. J Hunan Univ 2015;42(6):47–52. link1

[28] Feng P, Miao C, Bullard JW. A model of phase stability, microstructure and properties during leaching of Portland cement binders. Cem Concr Compos 2014;49(12):9–19. link1

[29] Jin YN, Zhou SX. Types and mechanism of concrete sulfate attack. J East China Jiaotong Univ 2006;23(5):4–8. Chinese. link1

[30] Fang XW, Shen CN, Yang DB, Chen ZH. Zhang ZF. Investigations of influence factor on the rate of concrete sulfate attack. J Build Mater 2007;10(1):89–96. Chinese. link1

[31] Ouyang CS, Nanni A, Chang WF. Internal and external sources of sulfate ions in portland cement mortar: two types of chemical attack. Cement Concr Res 1988;18(5):699–709. link1

[32] Chen JK, Jiang MT, Zhu J. Damage evolution in cement mortar due to corrosion of sulphate. Corros Sci 2008;50(9):2478–83. link1

[33] Liu K, Deng M, Mo L. Influence of pH on the formation of gypsum in cement materials during sulfate attack. Adv Cement Res 2015;27(8):487–93. link1

[34] Liu KW. Process and mechanism of deterioration of cementitious materials soaked in sodium sulfate solutions [dissertation]. Nanjing: Nanjing University of Technology; 2010. Chinese.

[35] Chen JK, Qian C, Song H. A new chemo-mechanical model of damage in concrete under sulfate attack. Constr Build Mater 2016;115:536–43. link1

[36] Shen XD, Li ZJ. Cement and concrete for marine applications. Beijing: Chemical Industry Press; 2016. Chinese.

[37] Yuan L, Shi HS, Wang ZL. Research and development status of geopolymeric cement. Hou Mater App 2002;30(2):21–4. Chinese. link1

[38] Alcamand HA, Borges PHR, Silva FA, Trindade ACC. The effect of matrix composition and calcium content on the sulfate durability of metakaolin and metakaolin/slag alkali-activated mortars. Ceram Int 2018;44(5):5037–44. link1

[39] Karakoç MB, Türkmen I, Maras MM, Kantarci F, Demirbog˘a R. Sulfate resistance of ferrochrome slag based geopolymer concrete. Ceram Int 2016;42(1):1254–60. link1

[40] Yan X, Jiang L, Guo M, Chen Y, Song Z, Bian R. Evaluation of sulfate resistance of slag contained concrete under steam curing. Constr Build Mater 2019;195:231–7. link1

[41] Thokchom S, Ghosh P, Ghosh S. Performance of fly ash based geopolymer mortars in sulphate solution. J Eng Sci Tech Rev 2010;3(1):36–8. link1

[42] Duan P, Yan C, Zhou W. Influence of partial replacement of fly ash by metakaolin on mechanical properties and microstructure of fly ash geopolymer paste exposed to sulfate attack. Ceram Int 2016;42(2): 3504–17. link1

[43] Ren D, Yan C, Duan P, Zhang Z, Li L, Yan Z. Durability performances of wollastonite, tremolite and basalt fiber-reinforced metakaolin geopolymer composites under sulfate and chloride attack. Constr Build Mater 2017;134:56–66. link1

[44] Sata V, Sathonsaowaphak A, Chindaprasirt P. Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack. Cem Concr Compos 2012;34(5):700–8. link1

[45] Chindaprasirt P, Paisitsrisawat P, Rattanasak U. Strength and resistance to sulfate and sulfuric acid of ground fluidized bed combustion fly ash–silica fume alkali-activated composite. Adv Constr Build Mater Powder Technol 2014;25(3):1087–93. link1

[46] Liu J, Shi D, Zhang WS, Ye JY, Zhang JB. Study on the mechanism of alkaliactivated cementitious materials prepared with calcium silicate slag. Bull Chin Ceram Soc 2014;33(1):6–20. Chinese. link1

[47] Zhang J, Shi CJ, Zhang ZH, Ou ZH. Durability of alkali-activated materials in aggressive environments: a review on recent studies. Constr Build Mater 2017;152:598–613. link1

[48] Lu J, Kang CY, Li Q. Properties and microstructure of sodium silicate activated cementitious materials. Bull Chin Ceram Soc 2017;36(10):3412–6. Chinese. link1

[49] Tao WH, Fu XH, Sun FJ, Yang ZX. Studies on properties and mechanisms of geopolymer cementitious material. Bull Chin Ceram Soc 2008;27(4):730–5. Chinese. link1

[50] Hou YF, Wang DM, Zhou WJ, Lu HB, Wang L. Study on sulfate-resistance of fly ash-based geopolymers. New Build Mater 2008;35(7):41–4. Chinese. link1

[51] Tang L, Huang Q, Wang QY, Zhang HE, Shi XS. Research on corrosion resistance and relevant mechanism of geopolymer concrete and ordinary concrete in the same sulfate solution. Mater Rev 2015;29(6):129–34. Chinese. link1

[52] Tang L, Zhang HE, Huang Q, Wang QY, Shi XS. Research on resistance to sulfates of fly ash based geopolymeric recycled concrete. J Sichuan Univ 2015;47(S1):164–70. Chinese. link1

[53] Palomo A, Blanco-Varela MT, Granizo ML, Puertas F, Vazquez T, Grutzeck MW. Chemical stability of cementitious materials based on metakaolin. Cement Concr Res 1999;29(7):997–1004. link1

[54] Bakharev T. Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cement Concr Res 2005;35(6):1233–46. link1

[55] Tang L, Wang QY, Zhang HE, Huang Q, Shi XS. Performance and microstructure of fly ash base geopolymer concrete in sulfate solution. Concrete 2016;1:112–5. Chinese. link1

[56] Dzˇunuzovic´ N, Komljenovic´ M, Nikolic´ V, Ivanovic´ T. External sulfate attack on alkali-activated fly ash-blast furnace slag composite. Constr Build Mater 2017;157:737–47. link1

[57] Ismail I, Bernal SA, Provis JL, Hamdan S, Van Deventer JSJ. Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Mater Struct 2013;46(3):361–73. link1

[58] Zheng JR, Yang CL, Chen YZ. Discussion on the mechanism of the resistance of alkali-activated cementing material to external sulfate attack. J Zhengzhou Univ 2012;33(3):4–7. Chinese. link1

[59] Elyamany HE, Abd Elmoaty AEM, Elshaboury AM. Magnesium sulfate resistance of geopolymer mortar. Constr Build Mater 2018;184:111–27. link1

[60] Jin MT, Chen Y, Dong HL. Research on sulfate attack resistance of the geopolymer solidification MSWI fly ash. J Zhejiang Univ Technol 2013;41 (6):596–600. Chinese. link1

[61] El-Hachem R, Rozière E, Grondin F, Loukili A. Multi-criteria analysis of the mechanism of degradation of Portland cement based mortars exposed to external sulphate attack. Cement Concr Res 2012;42(10):1327–35. link1

[62] Tang XY, Xiao J, Chen F. Effect and research progress of acid deposition on concrete durability. Mater Rev 2006;20(10):97–101. Chinese. link1

[63] Wang K, Ma BG, Long SZ, Luo ZT. Acid rain attack on different variety of cement concretes. J Wuhan Univ Technol 2009;31(2):1–4. Chinese. link1

[64] Ning BK, Chen SL, Zhang Q, Piao YZ, Hu DW. Double corrosion effects under acid and freezing and thawing corrosion and fracture behavior of concrete. J Shenyang Univ Technol 2005;27(5):575–8. Chinese. link1

[65] Alexander M, Bertron A, Belie ND. Performance of cement-based materials in aggressive aqueous environments. Berlin: Springer; 2013. link1

[66] Rüscher CH, Mielcarek E, Lutz W, Ritzmann A, Kriven WM. Weakening of alkali-activated metakaolin during aging investigated by the molybdate method and infrared absorption spectroscopy. J Am Ceram Soc 2010;93 (9):2585–90. link1

[67] Jirasit F, Rüscher CH, Lohaus L, Chindaprasirt P. Durability performance of alkali-activated metakaolin, slag, fly ash, and hybrids. In: Developments in strategic ceramic materials II: Ceramic engineering and science proceedings. Hoboken: Wiley Press; 2017. p. 1–12.

[68] Bernal SA, Rodriguez ED, De Gutierrez RM, Provis JL. Performance of alkaliactivated slag mortars exposed to acids. J Adv Cem Based Mater 2012;1 (3):138–51. link1

[69] Sumajouw DMJ, Wallah SE, Hardjito D. On the development of fly ash-based geopolymer concrete. ACI Mater J 2004;101(6):467–72. link1

[70] Albitar M, Ali MSM, Visintin P, Drechsler M. Durability evaluation of geopolymer and conventional concretes. Constr Build Mater 2017; 136:374–85. link1

[71] Fernandez-Jimenez A, García-Lodeiro I, Palomo A. Durability of alkaliactivated fly ash cementitious materials. J Mater Sci 2007;42(9):3055–65. link1

[72] Bouguermouh K, Bouzidi N, Mahtout L, Pérez-Villarejo L, Martínez-Cartas ML. Effect of acid attack on microstructure and composition of metakaolin-based geopolymers: the role of alkaline activator. J Non-Cryst Solids 2017;463: 128–37. link1

[73] Gao XX, Michaud P, Joussein E, Rossignol S. Behavior of metakaolin-based potassium geopolymers in acidic solutions. J Non-Cryst Solids 2013;380 (12):95–102. link1

[74] Bakharev T. Resistance of geopolymer materials to acid attack. Cement Concr Res 2005;35(4):658–70. link1

[75] Koenig A, Herrmann A, Overmann S, Dehn F. Resistance of alkali-activated binders to organic acid attack: assessment of evaluation criteria and damage mechanisms. Constr Build Mater 2017;151:405–13. link1

[76] Lloyd RR, Provis JL, Van Deventer JSJ. Acid resistance of inorganic polymer binders. 1. Corrosion rate. Mater Struct 2012;45(1–2):1–14. link1

[77] Zhao JW, Cui C, Ge YP, Xiao B, Peng H, Zhang JR. Recent development of research on durability of geopolymer for civil structural applications. Bull Chin Ceram Soc 2016;35(9):2832–40. Chinese. link1

[78] Jin MT, Zheng ZD, Sun Y, Chen LW, Jin ZF. Resistance of metakaolin-MSWI fly ash based geopolymer to acid and alkaline environments. J Non-Cryst Solids 2016;450:116–22. link1

[79] Zheng JR, Liu LN, Xie LX. Properties of the mortar and concrete of alkaliactivated fly-ash cementing materials. Concrete 2009;5:77–9. Chinese. link1

[80] Zhao XH, Liu CY, Zuo LM, Pang YZ, Liu YF. Experimental research on durability of new grouting materials with soda residue and fly ash matrix. Indus Constr 2018;48(3):31–6. Chinese. link1

[81] Mehta A, Siddique R. Sulfuric acid resistance of fly ash based geopolymer concrete. Constr Build Mater 2017;146:136–43. link1

[82] Shi CJ, Stegemann JA. Acid corrosion resistance of different cementing materials. Cement Concr Res 2000;30(5):803–8. link1

[83] Beddoe RE, Schmidt K. Acid attack on concrete—effect of concrete composition: part 1. Cem Int 2009;7:88–94. link1

[84] Gutberlet T, Hilbig H, Beddoe RE. Acid attack on hydrated cement—effect of mineral acids on the degradation process. Cement Concr Res 2015;74:35–43. link1

[85] Ashraf W. Carbonation of cement-based materials: challenges and opportunities. Constr Build Mater 2016;120:558–70. link1

[86] Šavija B, Lukovic´ M. Carbonation of cement paste: understanding, challenges, and opportunities. Constr Build Mater 2016;117:285–301. link1

[87] Shi CJ, Pavel VK, Della R. Alkali-activated cements and concretes. Beijing: Chemical Industry Press; 2008. Chinese. link1

[88] Hussain S, Bhunia D, Singh SB. Comparative study of accelerated carbonation of plain cement and fly-ash concrete. Build Eng 2016;10:285–301. link1

[89] Morandeau A, Thiery M, Dangla P. Impact of accelerated carbonation on OPC cement paste blended with fly ash. Cement Concr Res 2015;67:226–36. link1

[90] Li SB, Sun W. Review on deterioration of concrete subjected to coupling effect of fatigue load, carbonation and chlorides. J Chin Ceram Soc 2013;41 (11):1459–64. Chinese. link1

[91] Papadakis VG. Fundamental modeling and experimental investigation of concrete carbonation. ACI Mater J 1991;88(4):363–73. link1

[92] Goñi S, Gaztañaga MT, Guerrero A. Role of cement type on carbonation attack. J Mater Res 2002;17(7):1834–42. link1

[93] Martínez-Ramírez S, Fernández-Carrasco L. Carbonation of ternary cement systems. Constr Build Mater 2012;27(1):313–8. link1

[94] Ho LS, Nakarai K, Ogawa Y, Sasaki T, Morioka M. Effect of internal water content on carbonation progress in cement-treated sand and effect of carbonation on compressive strength. Cem Concr Compos 2018;85:9–21. link1

[95] Borges PHR, Costa JO, Milestone NB, Lynsdale CJ, Streatfield RE. Carbonation of CH and C-S-H in composite cement pastes containing high amounts of BFS. Cement Concr Res 2018;109:184–97. link1

[96] Shah V, Scrivener K, Bhattacharjee B, Bishnoi S. Changes in microstructure characteristics of cement paste on carbonation. Cement Concr Res 2018;109:184–97. link1

[97] Ye HL, Radlin´ ska A. Carbonation-induced volume change in alkali-activated slag. Constr Build Mater 2017;144:635–44. link1

[98] Criado M, Palomo A, Fernández-Jiménez A. Alkali activation of fly ashes. Part 1: effect of curing conditions on the carbonation of the reaction products. Fuel 2005;84(16):2048–54. link1

[99] He J, He JH, Wang YB. Carbonation characteristics of alkali-activated slag cementitious materials. Bull Chin Ceram Soc 2015;34(4):927–30. Chinese. link1

[100] McGinnis PB, Shelby JE. Diffusion of water in float glass melts. J Non-Cryst Solids 1994;177:381–8. link1

[101] Bernal SA, Provis JL, Brice DG, Kilcullen A, Duxson P, van Deventer JSJ. Accelerated carbonation testing of alkali-activated binders significantly underestimates service life: the role of pore solution chemistry. Cement Concr Res 2012;42(10):1317–26. link1

[102] Chen XX, Gao HL, Weng LQ, Chen W. Research on carbonation process of alkali-activated cement mortars. J Wuhan Univ Technol 2014;36(3):18–22. Chinese. link1

[103] Chen XX, Gao HL, Weng LQ, Chen W, Li GX. Research on the performance of alkali-activated cement mortars mixed with seawater. J Wuhan Univ Technol 2014;36(12):1–5. Chinese. link1

[104] Yu X, Yu X, Jiang X, Zhang JY, Hua Q, Yuan JN. Study on reinforced alkaliactivated slag mortar carbonation resistance and rebar corrosion. Concrete 2015;11:110–3. Chinese. link1

[105] Dong JL, Zhang TT, Wang LJ. Alkali-activated modified steel slag/Pisha sandstone composites. Acta Mater Com Sin 2016;33(1):132–41. Chinese. link1

[106] Li ZG, Li S. Carbonation resistance of fly ash and blast furnace slag based geopolymer concrete. Constr Build Mater 2018;163:668–80. link1

[107] Bernal SA, Provis JL, Walkley B, Nicolas RS, Gehman JD, Brice DG, et al. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cement Concr Res 2013;53(2):127–44. link1

[108] Bernal SA, Provis JL, Gutiérrez RMD, Van Deventer JSJ. Accelerated carbonation testing of alkali-activated slag/metakaolin blended concretes: effect of exposure conditions. Mater Struct 2015;48(3):653–69. link1

[109] Pouhet R, Cyr M. Carbonation in the pore solution of metakaolin-based geopolymer. Cement Concr Res 2016;88:227–35. link1

[110] Huang Q, Shi XS, Wang QY, Tang L. Research on carbonation of fly ash geopolymeric concrete. Chin Rura Water Hydr 2015;7:121–5. Chinese. link1

[111] Sufian Badar M, Kupwade-Patil K, Bernal SA, Provis JL, Allouche EN. Corrosion of steel bars induced by accelerated carbonation in low and high calcium fly ash geopolymer concretes. Constr Build Mater 2014;61:79–89. link1

[112] Huang Q, Shi XS, Wang QY, Tang L, Zhang HE. Effect of recycled coarse aggregate on carbonation resistance of fly ash geopolymeric concrete. Bull Chin Ceram Soc 2015;34(5):1264–9. Chinese. link1

[113] Anstice DJ, Page CL, Page MM. The pore solution phase of carbonated cement pastes. Cement Concr Res 2005;35(2):377–83. link1

[114] Monteiro PJ. Scaling and saturation laws for the expansion of concrete exposed to sulfate attack. Proc Natl Acad Sci USA 2006;103(31):11467–72. link1

[115] Hadi MNS, Al-Azzawi M, Yu T. Effects of fly ash characteristics and alkaline activator components on compressive strength of fly ash-based geopolymer mortar. Constr Build Mater 2018;175:41–54. link1

[116] Ma C, Awang AZ, Omar W. Structural and material performance of geopolymer concrete: a review. Constr Build Mater 2018;186:90–102. link1

[117] Bernal SA, San Nicolas R, Myers RJ, Mejía de Gutiérrez R, Puertas F, Van Deventer JSJ, et al. MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cement Concr Res 2014;57(3):33–43. link1

[118] Talukdar S, Banthia N, Grace JR. Carbonation in concrete infrastructure in the context of global climate change—part 1: experimental results and model development. Cem Concr Compos 2012;34(8):924–30. link1

[119] Zhang ZH, Provis JL, Ma X, Reid A, Wang H. Efflorescence and subflorescence induced microstructural and mechanical evolution in fly ash-based geopolymers. Cem Concr Compos 2018;92:165–77. link1

[120] Allahverdi A, Kani EN, Shaverdi B. Carbonation versus efflorescence in alkaliactivated blast-furnace slag in relation with chemical composition of activator. Int J Civ Eng 2017;15(4):565–73. link1

[121] Kani EN, Allahverdi A, Provis JL. Efflorescence control in geopolymer binders based on natural pozzolan. Cem Concr Compos 2012;34(1):25–33. link1

[122] Provis JL, Duxson P, Van Deventer JSJ, Lukey GC. The role of mathematical modelling and gel chemistry in advancing geopolymer technology. Chem Eng Res Des 2005;83(7):853–60. link1

[123] Škvára F, Kopecky´ L, Smilauer V, Bittnar Z. Material and structural characterization of alkali activated low-calcium brown coal fly ash. J Hazard Mater 2009;168(2–3):711–20. link1

[124] Bortnovsky O, Deˇdecˇek J, Tvaru˚ zˇková Z, Sobalik Z, Šubrt J. Metal ions as probes for characterization of geopolymer materials. J Am Ceram Soc 2008;91 (9):3052–7. link1

[125] Hamidi RM, Man Z, Azizli KA. Concentration of NaOH and the effect on the properties of fly ash based geopolymer. Proc Eng 2016;148:189–93. link1

[126] Zhang ZH, Provis JL, Reid A, Wang H. Fly ash-based geopolymers: the relationship between composition, pore structure and efflorescence. Cement Concr Res 2014;64(10):30–41. link1

[127] Martín-Pérez B, Zibara H, Hooton RD, Thomas MDA. A study of the effect of chloride binding on service life predictions. Cement Concr Res 2000;30 (8):1215–23. link1

[128] Tuutti K. Corrosion of steel in concrete. Swedish Foundation Concr Res Stockholm 1982;20(5):105–19. link1

[129] Wang SD, Huang YB, Wang Z. Concrete resistance to chloride ingress: effect of cement composition. J Chin Ceram Soc 2000;28(6):570–4. Chinese. link1

[130] Xie YJ, Ma KL, Long GC, Shi MX. Influence of mineral admixture on chloride ion permeability of concrete. J Chin Ceram Soc 2006;34(11):1345–50. Chinese. link1

[131] Shi HS, Wang Q. Research on the factors influencing on the chloride ingression in concrete. J Build Mater 2004;7(3):286–90. Chinese. link1

[132] Li CL, Lu XY. Rapid test method for determining chloride diffusivities in cementicious materiais. Ind Constr 1998;28(6):41–3. Chinese. link1

[133] Yang LF, Cai R, Yu B. Formation mechanism and multi-factor model for surface chloride concentration of concrete in marine atmosphere zone. Chin Civil Eng J 2017;50(12):46–55. Chinese. link1

[134] Shakouri M, Trejo D. A study of the factors affecting the surface chloride maximum phenomenon in submerged concrete samples. Cem Concr Compos 2018;94:181–90. link1

[135] Wang JG, Zhang JX, Guo YY, Zhou TJ. Influence mechanism of different factors on chloride ion penetration of concrete. Concrete 2018;8:49–53. Chinese. link1

[136] Liu JL, Fang Z. New method to calculate chloride ion diffusion in concrete under influences of multiple durability factors. J Build Mater 2013;16 (5):777–81. Chinese. link1

[137] Li QL, Shi CJ, He FQ, Xu S, Hu X, Wang XG, et al. Factors influencing free chloride ion condensation in cement-based materials. J Chin Ceram Soc 2013;41(3):320–7. Chinese. link1

[138] Shi CJ, Zhang LY, Zhang J, Li N. Ou ZH. Advances in testing methods and influencing factors of chloride ion transport properties of alkali-activated materials. Mater Rev 2017;31(15):95–100. Chinese. link1

[139] Zhang YS, Sun W, Sha JF, Liu ZJ. Preparation and properties of fly ash based geopolymer concrete. Chin Concr Cem Prod 2003;2:13–5. Chinese. link1

[140] Ravikumar D, Neithalath N. Electrically induced chloride ion transport in alkali activated slag concretes and the influence of microstructure. Cement Concr Res 2013;47(5):31–42. link1

[141] Park JW, Ann KY, Cho CG. Resistance of alkali-activated slag concrete to chloride-induced corrosion. Adv Mater Sci Eng 2015;2015:1–7. link1

[142] Thomas RJ, Ariyachandra E, Lezama D, Peethamparan S. Comparison of chloride permeability methods for alkali-activated concrete. Constr Build Mater 2018;165:104–11. link1

[143] Gevaudan JP, Campbell KM, Kane TJ, Shoemaker RK, Srubar WV III. Mineralization dynamics of metakaolin-based alkali-activated cements. Cement Concr Res 2017;94:1–12. link1

[144] Ma QM, Nanukuttan SV, Basheer PAM, Bai Y, Yang CH. Chloride transport and the resulting corrosion of steel bars in alkali activated slag concretes. Mater Struct 2015;49(9):1–15. link1

[145] Krizan D, Zivanovic B. Effects of dosage and modulus of water glass on early hydration of alkali–slag cements. Cement Concr Res 2002;32(8):1181–8. link1

[146] Bernal SA, Provis JL, Rose V, Mejía de Gutierrez R. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem Concr Compos 2011;33(1):46–54. link1

[147] Lloyd RR, Provis JL, van Deventer JSJ. Pore solution composition and alkali diffusion in inorganic polymer cement. Cement Concr Res 2010;40 (9):1386–92. link1

[148] Zhu HJ, Zhang ZH, Zhu YC, Tian L. Durability of alkali-activated fly ash concrete: chloride penetration in pastes and mortars. Constr Build Mater 2014;65(13):51–9. link1

[149] Zhou YH. Effects of recycled aggregate on mechanical and durability properties of high calcium ash geopolymer concrete. Sci Tech Eng 2017;17 (11):295–300. Chinese. link1

[150] Su Y, Wang ZH, Wang YB, Wang XJ, Wei XC, Zeng SH, et al. Strength and resistance to chloride ion penetration of fiber reinforced alkali-activated slag concrete. J Hubei Univ Tech 2017;32(1):19–21. Chinese. link1

[151] Shi JJ, Deng CH, Zhang YM. Early corrosion behavior of rebars embedded in the alkali-activated slag mortar. J Build Mater 2016;19(6):969–75. link1

[152] Chen Q, Chong G, Yang CH. Effect of mineral admixture on chloride ion permeability of alkali slag concrete. Chin Con Cem Prod 2008;3:11–3. Chinese. link1

[153] Zhang LF, Chen JX, Li SW. Examination study of alkali-activated slag-lithium slag concrete. J Build Mater 2006;9(4):488–92. Chinese. link1

[154] Khan MSH, Kayali O, Troitzsch U. Chloride binding capacity of hydrotalcite and the competition with carbonates in ground granulated blast furnace slag concrete. Mater Struct 2016;49(11):4609–19. link1

[155] Ke XY, Bernal SA, Provis JL. Uptake of chloride and carbonate by Mg–Al and Ca–Al layered double hydroxides in simulated pore solutions of alkaliactivated slag cement. Cement Concr Res 2017;100:1–13. link1

Related Research