Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2020, Volume 6, Issue 12 doi: 10.1016/j.eng.2020.05.002

Solvent-Less Vapor-Phase Fabrication of Membranes for Sustainable Separation Processes

a State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
b Institute of Zhejiang University–Quzhou, Quzhou 324000, China
c Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received: 2019-05-03 Revised: 2019-09-25 Accepted: 2020-05-07 Available online: 2020-05-13

Next Previous

Abstract

Sustainable processes for purifying water, capturing carbon, producing biofuels, operating fuel cells, and performing energy-efficient industrial separations will require next-generation membranes. Solvent-less fabrication for membranes not only eliminates potential environmental issues with organic solvents, but also solves the swelling problems that occur with delicate polymer substrates. Furthermore, the activation procedures often required for synthesizing microporous materials such as metal–organic frameworks (MOFs) can be reduced when solvent-less vapor-phase approaches are employed. This perspective covers several vacuum deposition processes, including initiated chemical vapor deposition (iCVD), initiated plasma-enhanced chemical vapor deposition (iPECVD), solvent-less vapor deposition followed by in situ polymerization (SLIP), atomic layer deposition (ALD), and molecular layer deposition (MLD). These solvent-less vapor-phase methods are powerful in creating ultrathin selective layers for thin-film composite membranes and advantageous in conformally coating nanoscale pores for the precise modification of pore size and internal functionalities. The resulting membranes have shown promising performance for gas separation, nanofiltration, desalination, and water/oil separation. Further development of novel membrane materials and the scaling up of high-throughput reactors for solvent-less vapor-phase processes are necessary in order to make a real impact on the chemical industry in the future.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

References

[ 1 ] Sholl DS, Lively RP. Seven chemical separations to change the world. Nature 2016;532(7600):435–7. link1

[ 2 ] Koros WJ, Zhang C. Materials for next-generation molecularly selective synthetic membranes. Nat Mater 2017;16(3):289–97. link1

[ 3 ] Singh R. Water and membrane treatment. In: Singh R, editor. Hybrid membrane systems for water purification. Amsterdam: Elsevier Science; 2006. p. 57–130. link1

[ 4 ] Weber M, Julbe A, Ayral A, Miele P, Bechelany M. Atomic layer deposition for membranes: basics, challenges, and opportunities. Chem Mater 2018;30 (21):7368–90. link1

[ 5 ] Lepoitevin M, Ma T, Bechelany M, Janot JM, Balme S. Functionalization of single solid state nanopores to mimic biological ion channels: a review. Adv Colloid Interface Sci 2017;250:195–213. link1

[ 6 ] Frank-Finney RJ, Haller PD, Gupta M. Ultrathin free-standing polymer films deposited onto patterned ionic liquids and silicone oil. Macromolecules 2012;45(1):165–70. link1

[ 7 ] Bradley LC, Gupta M. Microstructured films formed on liquid substrates via initiated chemical vapor deposition of cross-linked polymers. Langmuir 2015;31(29):7999–8005. link1

[ 8 ] Sreenivasan R, Bassett EK, Hoganson DM, Vacanti JP, Gleason KK. Ultra-thin, gas permeable free-standing and composite membranes for microfluidic lung assist devices. Biomaterials 2011;32(16):3883–9. link1

[ 9 ] Tufani A, Ince GO. Permeability of small molecules through vapor deposited polymer membranes. J Appl Polym Sci 2015;132(34):42453. link1

[10] Yang R, Jang H, Stocker R, Gleason KK. Synergistic prevention of biofouling in seawater desalination by zwitterionic surfaces and low-level chlorination. Adv Mater 2014;26(11):1711–8. link1

[11] Tenhaeff WE, Gleason KK. Surface-tethered pH-responsive hydrogel thin films as size-selective layers on nanoporous asymmetric membranes. Chem Mater 2009;21(18):4323–31. link1

[12] Asatekin A, Gleason KK. Polymeric nanopore membranes for hydrophobicitybased separations by conformal initiated chemical vapor deposition. Nano Lett 2011;11(2):677–86. link1

[13] Tufani A, Ince GO. Smart membranes with pH-responsive control of macromolecule permeability. J Membr Sci 2017;537:255–62. link1

[14] Ye Y, Mao Y. Vapor-based synthesis of ultrathin hydrogel coatings for thermoresponsive nanovalves. J Mater Chem 2011;21(22):7946–52. link1

[15] Ma M, Gupta M, Li Z, Zhai L, Gleason KK, Cohen RE, et al. Decorated electrospun fibers exhibiting superhydrophobicity. Adv Mater 2007;19(2):255–9. link1

[16] Servi AT, Kharraz J, Klee D, Notarangelo K, Eyob B, Guillen-Burrieza E, et al. A systematic study of the impact of hydrophobicity on the wetting of MD membranes. J Membr Sci 2016;520:850–9. link1

[17] Sun M, Wu Q, Xu J, He F, Brown AP, Ye Y. Vapor-based grafting of crosslinked poly(N-vinyl pyrrolidone) coatings with tuned hydrophilicity and antibiofouling properties. J Mater Chem B 2016;4(15):2669–78. link1

[18] Feng J, Sun M, Ye Y. Ultradurable underwater superoleophobic surfaces obtained by vapor-synthesized layered polymer nanocoatings for highly efficient oil–water separation. J Mater Chem A 2017;5(29):14990–5. link1

[19] Joo M, Shin J, Kim J, You JB, Yoo Y, Kwak MJ, et al. One-step synthesis of crosslinked ionic polymer thin films in vapor phase and its application to an oil/ water separation membrane. J Am Chem Soc 2017;139(6):2329–37. link1

[20] Coclite AM, Lund P, Di Mundo R, Palumbo F. Novel hybrid fluoro-carboxylated copolymers deposited by initiated chemical vapor deposition as protonic membranes. Polymer 2013;54(1):24–30. link1

[21] You JB, Kim YT, Lee KG, Choi Y, Choi S, Kim CH, et al. Surface-modified mesh filter for direct nucleic acid extraction and its application to gene expression analysis. Adv Healthc Mater 2017;6(20):1700642. link1

[22] Kwak MJ, Yoo Y, Lee HS, Kim J, Yang JW, Han JI, et al. A simple, cost-efficient method to separate microalgal lipids from wet biomass using surface energymodified membranes. ACS Appl Mater Interfaces 2016;8(1):600–8. link1

[23] An YH, Yu SJ, Kim IS, Kim SH, Moon JM, Kim SL, et al. Hydrogel functionalized Janus membrane for skin regeneration. Adv Healthc Mater 2017;6 (5):1600795. link1

[24] Xu J, Gleason KK. Conformal polymeric thin films by low-temperature rapid initiated chemical vapor deposition (iCVD) using tert-butyl peroxybenzoate as an initiator. ACS Appl Mater Interfaces 2011;3(7):2410–6. link1

[25] Matin A. Enhancing the biofouling resistance of reverse osmosis membranes by a novel surface modification technique [dissertation]. Dhahran: King Fahd University of Petroleum and Minerals; 2012. link1

[26] Yang R. Membrane modification by CVD polymers. In: Gleason KK, editor. CVD polymers. Hoboken: John Wiley & Sons; 2015. p. 279–300. link1

[27] Coclite AM, Howden RM, Borrelli DC, Petruczok CD, Yang R, Yagüe JL, et al. 25th anniversary article: CVD polymers: a new paradigm for surface modification and device fabrication. Adv Mater 2013;25(38):5392–423. link1

[28] Baxamusa SH, Gleason KK. Random copolymer films with molecular-scale compositional heterogeneities that interfere with protein adsorption. Adv Funct Mater 2009;19(21):3489–96. link1

[29] Yang R, Moni P, Gleason KK. Ultrathin zwitterionic coatings for roughnessindependent underwater superoleophobicity and gravity-driven oil–water separation. Adv Mater Interfaces 2015;2(2):1400489. link1

[30] Cai J, Liu X, Zhao Y, Guo F. Membrane desalination using surface fluorination treated electrospun polyacrylonitrile membranes with nonwoven structure and quasi-parallel fibrous structure. Desalination 2018;429:70–5. link1

[31] Cong S, Liu X, Guo F. Membrane distillation using surface modified multi-layer porous ceramics. Int J Heat Mass Transf 2019;129:764–72. link1

[32] Ye Y, Mao Y. Vapor-based synthesis and micropatterning of Janus thin films with distinct surface wettability and mechanical robustness. RSC Adv 2017;7 (40):24569–75. link1

[33] Tufani A, Ozaydin Ince G. Protein gating by vapor deposited Janus membranes. J Membr Sci 2019;575:126–34. link1

[34] Ozaydin-Ince G, Coclite AM, Gleason KK. CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes. Rep Prog Phys 2012;75 (1):016501. link1

[35] Boscher ND, Wang M, Perrotta A, Heinze K, Creatore M, Gleason KK. Metal– organic covalent network chemical vapor deposition for gas separation. Adv Mater 2016;28(34):7479–85. link1

[36] Boscher ND, Wang M, Gleason KK. Chemical vapour deposition of metalloporphyrins: a simple route towards the preparation of gas separation membranes. J Mater Chem A 2016;4(46):18144–52. link1

[37] Wang M, Boscher ND, Heinze K, Gleason KK. Gas selective ultrathin organic covalent networks synthesized by iPECVD: does the central metal ion matter? Adv Funct Mater 2017;27(29):1606652. link1

[38] Wang M, Zhao J, Wang X, Liu A, Gleason KK. Recent progress on submicron gas-selective polymeric membranes. J Mater Chem A 2017;5(19):8860–86. link1

[39] O’Brien KC, Letts SA, Spadaccini CM, Morse JC, Buckley SR, Fischer LE, et al., inventors; Lawrence Livermore National Security LLC, assignee. Preparation of membranes using solvent-less vapor deposition followed by in-situ polymerization. United States patent US7754281B2. 2010 Jul 13.

[40] Spadaccini CM, Mukerjee EV, Letts SA, Maiti A, O’Brien KC. Ultrathin polymer membranes for high throughput CO2 capture. Energy Procedia 2011;4:731–6. link1

[41] Parsons GN, George SM, Knez M. Progress and future directions for atomic layer deposition and ALD-based chemistry. MRS Bull 2011;36(11):865–71. link1

[42] Johnson RW, Hultqvist A, Bent SF. A brief review of atomic layer deposition: from fundamentals to applications. Mater Today 2014;17(5):236–46. link1

[43] Feng J, Xiong S, Wang Z, Cui Z, Sun SP, Wang Y. Atomic layer deposition of metal oxides on carbon nanotube fabrics for robust, hydrophilic ultrafiltration membranes. J Membr Sci 2018;550:246–53. link1

[44] Xiong S, Yang Y, Zhong Z, Wang Y. One-step synthesis of carbon-hybridized ZnO on polymeric foams by atomic layer deposition for efficient absorption of oils from water. Ind Eng Chem Res 2018;57(4):1269–76. link1

[45] Chen H, Wu S, Jia X, Xiong S, Wang Y. Atomic layer deposition fabricating of ceramic nanofiltration membranes for efficient separation of dyes from water. AIChE J 2018;64(7):2670–8. link1

[46] Feng J, Xiong S, Wang Y. Atomic layer deposition of TiO2 on carbon-nanotube membranes for enhanced capacitive deionization. Sep Purif Technol 2019;213:70–7. link1

[47] Weber M, Kim JY, Lee JH, Kim JH, Iatsunskyi I, Coy E, et al. Highly efficient hydrogen sensors based on Pd nanoparticles supported on boron nitride coated ZnO nanowires. J Mater Chem A 2019;7(14):8107–16. link1

[48] Peng Q, Sun XY, Spagnola JC, Hyde GK, Spontak RJ, Parsons GN. Atomic layer deposition on electrospun polymer fibers as a direct route to Al2O3 microtubes with precise wall thickness control. Nano Lett 2007;7(3):719–22. link1

[49] George SM, Yoon B, Dameron AA. Surface chemistry for molecular layer deposition of organic and hybrid organic–inorganic polymers. Acc Chem Res 2009;42(4):498–508. link1

[50] Wu S, Wang Z, Xiong S, Wang Y. Tailoring TiO2 membranes for nanofiltration and tight ultrafiltration by leveraging molecular layer deposition and crystallization. J Membr Sci 2019;578:149–55. link1

[51] Zhao Y, Sun X. Molecular layer deposition for energy conversion and storage. ACS Energy Lett 2018;3(4):899–914. link1

[52] Denny MS, Moreton JC, Benz L, Cohen SM. Metal–organic frameworks for membrane-based separations. Nat Rev Mater 2016;1(12):16078. link1

[53] Zhao J, Losego MD, Lemaire PC, Williams PS, Gong B, Atanasov SE, et al. Highly adsorptive, MOF-functionalized nonwoven fiber mats for hazardous gas capture enabled by atomic layer deposition. Adv Mater Interfaces 2014;1 (4):1400040. link1

[54] Zhao J, Gong B, Nunn WT, Lemaire PC, Stevens EC, Sidi FI, et al. Conformal and highly adsorptive metal–organic framework thin films via layer-by-layer growth on ALD-coated fiber mats. J Mater Chem A Mater Energy Sustain 2015;3(4):1458–64. link1

[55] Zhao J, Lee DT, Yaga RW, Hall MG, Barton HF, Woodward IR, et al. Ultra-fast degradation of chemical warfare agents using MOF-nanofiber kebabs. Angew Chem Int Ed Engl 2016;55(42):13224–8. link1

[56] Zhao J, Nunn WT, Lemaire PC, Lin Y, Dickey MD, Oldham CJ, et al. Facile conversion of hydroxy double salts to metal–organic frameworks using metal oxide particles and atomic layer deposition thin-film templates. J Am Chem Soc 2015;137(43):13756–9. link1

[57] Zhao J, Kalanyan B, Barton HF, Sperling BA, Parsons GN. In situ time-resolved attenuated total reflectance infrared spectroscopy for probing metal–organic framework thin film growth. Chem Mater 2017;29(20):8804–10. link1

[58] Lee DT, Jamir JD, Peterson GW, Parsons GN. Water-stable chemical-protective textiles via euhedral surface-oriented 2D Cu-TCPP metal–organic frameworks. Small 2019;15(10):e1805133. link1

[59] Bechelany M, Drobek M, Vallicari C, Abou Chaaya A, Julbe A, Miele P. Highly crystalline MOF-based materials grown on electrospun nanofibers. Nanoscale 2015;7(13):5794–802. link1

[60] Drobek M, Bechelany M, Vallicari C, Abou Chaaya A, Charmette C, SalvadorLevehang C, et al. An innovative approach for the preparation of confined ZIF-8 membranes by conversion of ZnO ALD layers. J Membr Sci 2015;475:39–46. link1

[61] Stassen I, Styles M, Grenci G, Gorp HV, Vanderlinden W, Feyter SD, et al. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat Mater 2016;15(3):304–10. link1

[62] Salmi LD, Heikkilä MJ, Puukilainen E, Sajavaara T, Grosso D, Ritala M. Studies on atomic layer deposition of MOF-5 thin films. Microporous Mesoporous Mater 2013;182:147–54. link1

[63] Lausund KB, Nilsen O. All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition. Nat Commun 2016;7(1):13578. link1

[64] Lausund KB, Petrovic V, Nilsen O. All-gas-phase synthesis of aminofunctionalized UiO-66 thin films. Dalton Trans 2017;46(48):16983–92. link1

[65] Ahvenniemi E, Karppinen M. Atomic/molecular layer deposition: a direct gasphase route to crystalline metal–organic framework thin films. Chem Commun 2016;52(6):1139–42. link1

[66] Ahvenniemi E, Karppinen M. In situ atomic/molecular layer-by-layer deposition of inorganic–organic coordination network thin films from gaseous precursors. Chem Mater 2016;28(17):6260–5. link1

[67] Tanskanen A, Karppinen M. Iron-terephthalate coordination network thin films through in-situ atomic/molecular layer deposition. Sci Rep 2018;8 (1):8976. link1

[68] Nisula M, Linnera J, Karttunen AJ, Karppinen M. Lithium aryloxide thin films with guest-induced structural transformation by ALD/MLD. Chemistry 2017;23(13):2988–92. link1

[69] Li K, Olson DH, Seidel J, Emge TJ, Gong H, Zeng H, et al. Zeolitic imidazolate frameworks for kinetic separation of propane and propene. J Am Chem Soc 2009;131(30):10368–9. link1

[70] Ma X, Kumar P, Mittal N, Khlyustova A, Daoutidis P, Mkhoyan KA, et al. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science 2018;361(6406):1008–11. link1

[71] Loyer F, Frache G, Choquet P, Boscher ND. Atmospheric pressure plasmainitiated chemical vapor deposition (AP-PiCVD) of poly(alkyl acrylates): an experimental study. Macromolecules 2017;50(11):4351–62. link1

[72] Loyer F, Bengasi G, Frache G, Choquet P, Boscher ND. Insights in the initiation and termination of poly(alkyl acrylates) synthesized by atmospheric pressure plasma-initiated chemical vapor deposition (AP-PiCVD). Plasma Process Polym 2018;15(5):1800027. link1

[73] Stair PC, Marshall C, Xiong G, Feng H, Pellin MJ, Elam JW, et al. Novel, uniform nanostructured catalytic membranes. Top Catal 2006;39(3–4):181–6. link1

[74] Venkatesan BM, Dorvel B, Yemenicioglu S, Watkins N, Petrov I, Bashir R. Highly sensitive, mechanically stable nanopore sensors for DNA analysis. Adv Mater 2009;21(27):2771–6. link1

[75] Zhang J, Xu W, Liu W. Oxygen-selective immobilized liquid membranes for operation of lithium–air batteries in ambient air. J Power Sources 2010;195 (21):7438–44. link1

[76] Beneq WCS 600 [Internet]. Espoo: Beneq; c2005–19 [cited 2019 May 2]. Available from: https://beneq.com/en/thin-films/products/roll-roll-ald/beneqwcs-600. link1

[77] Malinen V, Cook A. Beneq roll-to-roll ALD in practice [Internet]. Espoo: Beneq; 2017 [cited 2019 May 2]. Available from: https://beneq.com/en/thin-films/ research-world/science-letters/beneq-roll-roll-ald-in-practice. link1

[78] Higgs DJ, DuMont JW, Sharma K, George SM. Spatial molecular layer deposition of polyamide thin films on flexible polymer substrates using a rotating cylinder reactor. J Vac Sci Technol, A 2018;36(1):01A117. link1

Related Research