Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2021, Volume 7, Issue 1 doi: 10.1016/j.eng.2020.06.022

Application of the Chemical-Looping Concept for Azoetrope Separation

School of Chemical Engineering and Technology, Tianjin University & National Engineering Research Center of Distillation Technology & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300350, China

Received: 2019-10-29 Revised: 2020-06-26 Accepted: 2020-06-28 Available online: 2020-11-19

Next Previous

Abstract

The need for the separation of azeotropic mixtures for the production of high-end chemicals and resource recovery has spurred significant research into the development of new separation methods in the chemical industry. In this paper, a green and sustainable method for azeotrope separation is proposed based on a chemical-looping concept with the help of reversible-reaction-assisted distillation. The central concept in the chemical-looping separation (CLS) method is the selection of a reactant that can react with the azeotrope components and can also be recycled by the reverse reaction to close the loop and achieve cyclic azeotrope separation. This paper aims to provide an informative perspective on the fundamental theory and applications of the CLS method based on the separation principle, reactant selection, and case analysis, for example, the separation of alkenes, alkane, aromatics, and polyol products. In summary, we provide guidance and references for chemical separation process intensification in product refining and separation from azeotropic systems for the development of a more sustainable chemical industry.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

References

[ 1 ] Li H, Zhao Z, Xiouras C, Stefanidis GD, Li X, Gao X. Fundamentals and applications of microwave heating to chemicals separation processes. Renew Sustain Energy Rev 2019;114:109316. link1

[ 2 ] Graczová E, Šulgan B, Barabas S, Steltenpohl P. Methyl acetate–methanol mixture separation by extractive distillation: economic aspects. Front Chem Sci Eng 2018;12(4):670–82. link1

[ 3 ] Kulajanpeng K, Suriyapraphadilok U, Gani R. Systematic screening methodology and energy efficient design of ionic liquid-based separation processes. J Cleaner Prod 2016;111:93–107. link1

[ 4 ] Pavlenko AN, Zhukov VE, Pecherkin NI, Nazarov AD, Slesareva EY, Li X, et al. Efficiency of mixture separation in distillation columns with structured packings under different ways of dynamically controlled irrigation. J Eng Thermophys 2019;28(3):313–23. link1

[ 5 ] Li H, Meng Y, Shu C, Li X, Kiss AA, Gao X. Innovative reactive distillation process for the sustainable synthesis of natural benzaldehyde. ACS Sustainable Chem Eng 2018;6(11):14114–24. link1

[ 6 ] Zhu Z, Geng X, He W, Chen C, Wang Y, Gao J. Computer-aided screening of ionic liquids as entrainers for separating methyl acetate and methanol via extractive distillation. Ind Eng Chem Res 2018;57(29):9656–64. link1

[ 7 ] Bakhtiari O, Hashemi Safaee S. Industrial grade 1-butene/isobutane separation using supported liquid membranes. Chem Eng Res Des 2017;123:180–6. link1

[ 8 ] Brinkmann T, Lillepärg J, Notzke H, Pohlmann J, Shishatskiy S, Wind J, et al. Development of CO2 selective poly(ethylene oxide)-based membranes: from laboratory to pilot plant scale. Engineering 2017;3(4):485–93. link1

[ 9 ] Zhao T, Geng X, Qi P, Zhu Z, Gao J, Wang Y. Optimization of liquid–liquid extraction combined with either heterogeneous azeotropic distillation or extractive distillation processes to reduce energy consumption and carbon dioxide emissions. Chem Eng Res Des 2018;132:399–408. link1

[10] Cháfer A, de la Torre J, Loras S, Montón JB. Study of liquid–liquid extraction of ethanol + water azeotropic mixtures using two imidazolium-based ionic liquids. J Chem Thermodyn 2018;118:92–9. link1

[11] Bono A, Sarbatly R, Krishnaiah D, San PM, Yan FY. Effect of ultrasound on liquid phase adsorption of azeotropic and non-azeotropic mixture. Catal Today 2008;131(1-4):472–6. link1

[12] Alaerts L, Kirschhock CA, Maes M, van der Veen M, Finsy V, Depla A, et al. Selective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(IV) terephthalate MIL-47. Angew Chem Int Ed 2007;46(23):4293–7. link1

[13] Hu Y, Hu YS, Topolkaraev V, Hiltner A, Baer E. Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethylene glycol). Polymer 2003;44(19):5681–9. link1

[14] Jin J, Du J, Xia Q, Liang Y, Han CC. Effect of mesophase separation on the crystallization behavior of olefin block copolymers. Macromolecules 2010;43 (24):10554–9. link1

[15] Lesage N, Sperandio M, Cabassud C. Study of a hybrid process: adsorption on activated carbon/membrane bioreactor for the treatment of an industrial wastewater. Chem Eng Process Process Intensif 2008;47(3):303–7. link1

[16] Guo A, Ban Y, Yang K, Yang W. Metal–organic framework-based mixed matrix membranes: synergetic effect of adsorption and diffusion for CO2/CH4 separation. J Membr Sci 2018;562:76–84. link1

[17] Baghel S, Cathcart H, O’Reilly NJ. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci 2016;105(9):2527–44. link1

[18] Egorova KS, Gordeev EG, Ananikov VP. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem Rev 2017;117(10):7132–89. link1

[19] Kiss AA, Suszwalak DPC. Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns. Sep Purif Technol 2012;86:70–8. link1

[20] Lei Z, Xi X, Dai C, Zhu J, Chen B. Extractive distillation with the mixture of ionic liquid and solid inorganic salt as entrainers. AIChE J 2014;60(8):2994–3004. link1

[21] Luyben WL. Comparison of flowsheets for THF/water separation using pressure-swing distillation. Comput Chem Eng 2018;115:407–11. link1

[22] Seiler M, Köhler D, Arlt W. Hyperbranched polymers: new selective solvents for extractive distillation and solvent extraction. Sep Purif Technol 2003;30 (2):179–97. link1

[23] Lei Z, Dai C, Zhu J, Chen B. Extractive distillation with ionic liquids: a review. AIChE J 2014;60(9):3312–29. link1

[24] Kossack S, Kraemer K, Gani R, Marquardt W. A systematic synthesis framework for extractive distillation processes. Chem Eng Res Des 2008;86(7):781–92. link1

[25] Li H, Wu Y, Li X, Gao X. State-of-the-art of advanced distillation technologies in China. Chem Eng Technol 2016;39(5):815–33. link1

[26] Zhao Y, Ma K, Bai W, Du D, Zhu Z, Wang Y, et al. Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol. Energy 2018;148:296–308. link1

[27] Liang S, Cao Y, Liu X, Li X, Zhao Y, Wang Y, et al. Insight into pressure-swing distillation from azeotropic phenomenon to dynamic control. Chem Eng Res Des 2017;117:318–35. link1

[28] Li H, Huang W, Li X, Gao X. Application of the aldolization reaction in separating the mixture of ethylene glycol and 1,2-butanediol: thermodynamics and new separation process. Ind Eng Chem Res 2016;55 (37):9994–10003. link1

[29] Ch VL, Ravuru U, Kotra V, Bankupalli S, Prasad RBN. Novel route for recovery of glycerol from aqueous solutions by reversible reactions. Int J Chem React Eng 2009;7(1):1–16. link1

[30] Tink RR, Neish AC. Extraction of polyhydroxy compounds from dilute aqueous solutions by cyclic acetal formation. I. An investigation of the scope of the process. Can J Technol 1951;29:243–9. link1

[31] Adánez J, de Diego LF, García-Labiano F, Gayán P, Abad A, Palacios JM. Selection of oxygen carriers for chemical-looping combustion. Energy Fuels 2004;18 (2):371–7. link1

[32] Ishida M, Jin H. A new advanced power-generation system using chemicallooping combustion. Energy 1994;19(4):415–22. link1

[33] Fan LS, Li F. Chemical looping technology and its fossil energy conversion applications. Ind Eng Chem Res 2010;49(21):10200–11. link1

[34] Hsieh TL, Xu D, Zhang Y, Nadgouda S, Wang D, Chung C, et al. 250 kWth high pressure pilot demonstration of the syngas chemical looping system for high purity H2 production with CO2 capture. Appl Energy 2018;230:1660–72. link1

[35] He Y, Zhu L, Li L, Rao D. Life-cycle assessment of SNG and power generation: the role of implement of chemical looping combustion for carbon capture. Energy 2019;172:777–86. link1

[36] Ubando AT, Chen WH, Ashokkumar V, Chang JS. Iron oxide reduction by torrefied microalgae for CO2 capture and abatement in chemical-looping combustion. Energy 2019;186:115903. link1

[37] Clark JA, Santiso EE. Carbon sequestration through co2 foam-enhanced oil recovery: a green chemistry perspective. Engineering 2018;4(3):336–42. link1

[38] Fan LS, Zeng L, Wang W, Luo S. Chemical looping processes for CO2 capture and carbonaceous fuel conversion-prospect and opportunity. Energy Environ Sci 2012;5(6):7254–80. link1

[39] Senkus M. Recovery of 2,3-butanediol produced by fermentation. Ind Eng Chem 1946;38(9):913–6. link1

[40] Chopade SP, Sharma MM. Acetalization of ethylene glycol with formaldehyde using cation-exchange resins as catalysts: batch versus reactive distillation. React Funct Polym 1997;34(1):37–45. link1

[41] Saha B, Chopade SP, Mahajani SM. Recovery of dilute acetic acid through esterification in a reactive distillation column. Catal Today 2000;60(1–2):147–57. link1

[42] Zimmerman JB, Anastas PT, Erythropel HC, Leitner W. Designing for a green chemistry future. Science 2020;367(6476):397–400. link1

[43] Kiss AA, Jobson M, Gao X. Reactive distillation: stepping up to the next level of process intensification. Ind Eng Chem Res 2019;58(15):5909–18. link1

[44] Saito S, Michishita T, Maeda S. Separation of meta- and para-xylene mixture by distillation accompanied by chemical reactions. J Chem Eng Jpn 1971;4(1): 37–43. link1

[45] Moldenhauer P, Rydén M, Mattisson T, Lyngfelt A. Chemical-looping combustion and chemical-looping with oxygen uncoupling of kerosene with Mn- and Cu-based oxygen carriers in a circulating fluidized-bed 300W laboratory reactor. Fuel Process Technol 2012;104:378–89. link1

[46] Bayham S, McGiveron O, Tong A, Chung E, Kathe M, Wang D, et al. Parametric and dynamic studies of an iron-based 25-kWth coal direct chemical looping unit using sub-bituminous coal. Appl Energy 2015;145:354–63. link1

[47] Adánez J, Gayán P, Celaya J, de Diego LF, García-Labiano F, Abad A. Chemical looping combustion in a 10 kWth prototype using a CuO/Al2O3 oxygen carrier: effect of operating conditions on methane combustion. Ind Eng Chem Res 2006;45(17):6075–80. link1

[48] Li X, Wang R, Na J, Li H, Gao X. Reversible reaction-assisted intensification process for separating the azeotropic mixture of ethanediol and 1,2- butanediol: reactants screening. Ind Eng Chem Res 2018;57(2):710–7. link1

[49] Sundmacher K, Kienle A, editors. Reactive distillation: status and future directions. Hoboken: John Wiley & Sons; 2006. link1

[50] Collin G, Höke H. Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH; 2001. link1

[51] Zhao Y, Xu Y, Wu D, Wei W, Sun Y, Al-Arifi ASN, et al. Hydrophobic mesoporous silica applied in GC separation of hexene isomers. J Sol-Gel Sci Technol 2010;56(1):93–8. link1

[52] Li R, Xing H, Yang Q, Zhao Xu, Su B, Bao Z, et al. Selective extraction of 1-hexene against n-hexane in ionic liquids with or without silver salt. Ind Eng Chem Res 2012;51(25):8588–97. link1

[53] Castellanos-Beltran IJ, Assima GP, Lavoie JM. Effect of temperature in the conversion of methanol to olefins (MTO) using an extruded SAPO-34 catalyst. Front Chem Sci Eng 2018;12(2):226–38. link1

[54] Sadrameli SM, Green AES. Systematics and modeling representations of naphtha thermal cracking for olefin production. J Anal Appl Pyrol 2005;73 (2):305–13. link1

[55] Li X, Song F. Advances in olefin production technology by catalytic cracking. Petrochem Technol 2002;31(7):569–73. Chinese. link1

[56] Wentink AE, Kuipers NJM, de Haan AB, Scholtz J, Mulder H. Synthesis and evaluation of metal-ligand complexes for selective olefin solubilization in reactive solvents. Ind Eng Chem Res 2005;44(13):4726–36. link1

[57] Wentink AE, Kuipers NJM, de Haan AB, Scholtz J, Mulder H. Olefin isomer separation by reactive extractive distillation: modelling of vapour–liquid equilibria and conceptual design for 1-hexene purification. Chem Eng Process Process 2007;46(9):800–9. link1

[58] Kuipers NJM, Wentink AE, de Haan AB, Scholtz J, Mulder H. Functionalized solvents for olefin isomer purification by reactive extractive distillation. Chem Eng Res Des 2007;85(1):88–99. link1

[59] Wentink AE, Kockmann D, Kuipers NJM, de Haan AB, Scholtz J, Mulder H. Effect of C6-olefin isomers on p-complexation for purification of 1-hexene by reactive extractive distillation. Sep Purif Technol 2005;43(2):149–62. link1

[60] Lu L, Orr JD, inventors; Eisai Co., Ltd., assignee. Separation of olefinic isomers. United States patent US 6861512. 2005 Mar 1.

[61] De Klerk A. Etherification of C6 Fischer-Tropsch material for linear a-olefin recovery. Ind Eng Chem Res 2004;43(20):6349–54. link1

[62] Song F, Yu Y, Chen J. Separation of C6-olefin isomers in reactive extractants. Tinshhua Sci Technol 2008;13(5):730–5. link1

[63] Ghanta M, Fahey DR, Busch DH, Subramaniam B. Comparative economic and environmental assessments of H2O2-based and tertiary butyl hydroperoxidebased propylene oxide technologies. ACS Sustainable Chem Eng 2013;1 (2):268–77. link1

[64] Schrans S, de Wolf S, Baur R. Dynamic simulation of reactive distillation: an MTBE case study. Comput Chem Eng 1996;20:S1619–24. link1

[65] Norkobilov A, Gorri D, Ortiz I. Comparative study of conventional, reactivedistillation and pervaporation integrated hybrid process for ethyl tert-butyl ether production. Chem Eng Process Process Intensif 2017;122:434–46. link1

[66] Gao X, Wang F, Li H, Li X. Heat-integrated reactive distillation process for TAME synthesis. Sep Purif Technol 2014;132:468–78. link1

[67] Kolah AK, Qi ZW, Mahajani SM. Dimenzed isobutene: an alternative to MTBE. Chem Innovation 2001;31(3):15–21. link1

[68] Kamath RS, Qi ZW, Sundmacher K, Aghalayam P, Mahajani SM. Process analysis for dimerization of isobutene by reactive distillation. Ind Eng Chem Res 2006;45(5):1575–82. link1

[69] Talwalkar S, Mankar S, Katariya A, Aghalayam P, Ivanova M, Sundmacher K, et al. Selectivity engineering with reactive distillation for dimerization of C4 olefins: experimental and theoretical studies. Ind Eng Chem Res 2007;46 (10):3024–34. link1

[70] Azimi SS, Kalbasi M. Three-phase modeling of dehydrogenation of isobutane to isobutene in a fluidized bed reactor: effect of operating conditions on the energy consumption. Energy 2018;149:250–61. link1

[71] Gehre M, Guo Z, Rothenberg G, Tanase S. Sustainable separations of C4- hydrocarbons by using microporous materials. ChemSusChem 2017;10(20): 3947–63. link1

[72] Stein E, Kienle A, Sundmacher K. Separation using coupled reactive distillation columns. Chem Eng 2000;107(13):68. link1

[73] Sneesby MG, Tadé MO, Smith TN. Multiplicity and pseudo-multiplicity in MTBE and ETBE reactive distillation. Chem Eng Res Des 1998;76(4):525–31. link1

[74] Huang K, Wang SJ. Design and control of a methyl tertiary butyl ether (MTBE) decomposition reactive distillation column. Ind Eng Chem Res 2007;46 (8):2508–19. link1

[75] Johnson R, Pankow J, Bender D, Price C, Zogorski J. Peer reviewed: MTBE—to what extent will past releases contaminate community water supply wells? Environ Sci Technol 2000;34(9):210A–7A. link1

[76] Mohameed HA, Jdayil BA, Takrouri K. Separation of para-xylene from xylene mixture via crystallization. Chem Eng Process Process Intensif 2007;46 (1):25–36. link1

[77] Yang H, Hu Y. Separation of para-xylene and meta-xylene by extraction process using aqueous cyclodextrins solution. Chem Eng Process Process Intensif 2017;116:114–20. link1

[78] Wytcherley RW, McCandless FP. The separation of meta- and para-xylene by pervaporation in the presence of CBr4, a selective feed-complexing agent. J Membr Sci 1992;67(1):67–74. link1

[79] Zlatkis A, O’Brien L, Scholly PR. Gas chromatographic separation of meta- and para-xylenes in aromatic mixtures. Nature 1958;181(4626):1794. link1

[80] Yin A, Guo X, Dai WL, Li H, Fan K. Highly active and selective copper-containing HMS catalyst in the hydrogenation of dimethyl oxalate to ethylene glycol. Appl Catal A 2008;349(1-2):91–9. link1

[81] Wen C, Cui Y, Chen Xi, Zong B, DaiWL. Reaction temperature controlled selective hydrogenation of dimethyl oxalate to methyl glycolate and ethylene glycol over copper-hydroxyapatite catalysts. Appl Catal B 2015;162:483–93. link1

[82] Chen LF, Guo PJ, Qiao MH, Yan SR, Li HX, Shen W, et al. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol. J Catal 2008;257(1):172–80. link1

[83] Pang J, Zheng M, Sun R, Wang A, Wang X, Zhang T. Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET. Green Chem 2016;18 (2):342–59. link1

[84] Delidovich I, Hausoul PJC, Deng Li, Pfützenreuter R, Rose M, Palkovits R. Alternative monomers based on lignocellulose and their use for polymer production. Chem Rev 2016;116(3):1540–99. link1

[85] Ai S, Zheng M, Jiang Yu, Yang X, Li X, Pang J, et al. Selective removal of 1,2- propanediol and 1,2-butanediol from bio-ethylene glycol by catalytic reaction. AIChE J 2017;63(9):4032–42. link1

[86] Yang Z, Xia S, Shang Q, Yan F, Ma P. Isobaric vapor–liquid equilibrium for the binary system (ethane-1,2-diol + butan-1,2-diol) at (20, 30, and 40) kPa. J Chem Eng Data 2014;59(3):825–31. link1

[87] Zhu L, Yan J, Xiao W. Measuring and correlating the vapor liquid equilibria of the binary system ethylene glycol and 1,2-butanediol. Chem Eng 2012;40:35. link1

[88] Zhu LT, Yan JM, Xiao WD. Determination and correlation of VLE data for ethylene glycol and 1,2-butanediol system. Chem Eng 2012;40(7):34–7. Chinese. link1

[89] Li H, Wu C, Zhang Q, Li X, Gao X. Synthesis of 1,3-dioxolane from aqueous formaldehyde solution and ethylene glycol: kinetics and reactive distillation. Ind Eng Chem Res 2019;58(17):7025–36. link1

[90] Berg L, inventor; Berg L, assignee. Recovery of ethylene glycol from butanediol isomers by azeotropic distillation. United States patent US 4966658. 1990 Oct 30.

[91] Li H, Zhao Z, Qin J, Wang R, Li X, Gao X. Reversible reaction-assisted intensification process for separating the azeotropic mixture of ethanediol and 1,2-butanediol: vapor–liquid equilibrium and economic evaluation. Ind Eng Chem Res 2018;57(14):5083–92. link1

[92] Huang W, Li H, Wang R, Li X, Gao X. Application of the aldolization reaction in separating the mixture of ethylene glycol and 1,2-butanediol: kinetics and reactive distillation. Chem Eng Process 2017;120:173–83. link1

[93] Li X, Wang R, Yan Y, Zhao R, Li H, Gao X. Ethylene glycol recovery from 2-ethyl1,3-dioxolane hydrolysis via reactive distillation: pilot-scale experiments and process analysis. Ind Eng Chem Res 2019;58(45):20746–57. link1

[94] Wang R, Li X, Na J, Wu Y, Zhao R, Yan Y, et al. Reversible reaction-assisted intensification process for separating ethanediol and 1,2-butanediol: competitive kinetic study and conceptual design. Sep Purif Technol 2020;237:116323. link1

Related Research