Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2021, Volume 7, Issue 8 doi: 10.1016/j.eng.2020.09.013

Engineered Biomimetic Platelet Membrane-Coated Nanoparticles Block Staphylococcus aureus Cytotoxicity and Protect Against Lethal Systemic Infection

a Division of Nephrology, Department of Internal Medicine & Kidney Research Institute, Hallym University Sacred Heart Hospital, Anyang 14068, Republic of Korea
b Department of Clinical Immunology, Hallym University Sacred Heart Hospital, Anyang 14068, Republic of Korea
c Division of Host–Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
d Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
e Moores Cancer Center, University of California San Diego Health, La Jolla, CA 92037, USA
f Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA

Received: 2020-06-26 Revised: 2020-09-05 Accepted: 2020-09-07 Available online: 2019-12-01

Next Previous

Abstract

Staphylococcus (S.) aureus is a leading human pathogen capable of producing severe invasive infections such as bacteremia, sepsis, and endocarditis with high morbidity and mortality, exacerbated by the increasingly widespread antibiotic resistance exemplified by methicillin-resistant strains (MRSA). S. aureus pathogenesis is fueled by the secretion of toxins—such as the membrane-damaging pore-forming atoxin,
which have diverse cellular targets including the epithelium, endothelium, leukocytes, and platelets. Here, we examine the use of human platelet membrane-coated nanoparticles (PNPs) as a biomimetic decoy strategy to neutralize S. aureus toxins and preserve host cell defense functions. The PNPs blocked platelet damage induced by S. aureus secreted toxins, thereby supporting platelet activation and bactericidal
activity. Likewise, the PNPs blocked macrophage damage induced by S. aureus secreted toxins, thus supporting macrophage oxidative burst, nitric oxide production, and bactericidal activity, and diminishing MRSA-induced neutrophil extracellular trap release. In a mouse model of MRSA systemic infection, PNP administration reduced bacterial counts in the blood and protected against mortality. Taken together, the results from the present work provide a proof of principle of the therapeutic benefit of PNPs in toxin neutralization, cytoprotection, and increased host resistance to invasive S. aureus infection.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

References

[ 1 ] Wong CHY, Jenne CN, Petri B, Chrobok NL, Kubes P. Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance. Nat Immunol 2013;14(8):785–92. link1

[ 2 ] Mantovani A, Garlanda C. Platelet–macrophage partnership in innate immunity and inflammation. Nat Immunol 2013;14(8):768–70. link1

[ 3 ] Garraud O, Cognasse F. Are platelets cells? And if yes, are they immune cells? Front Immunol 2015;6:70.

[ 4 ] McDonald B, Dunbar M. Platelets and intravascular immunity: guardians of the vascular space during bloodstream infections and sepsis. Front Immunol 2019;10:2400. link1

[ 5 ] Gaertner F, Massberg S. Patrolling the vascular borders: platelets in immunity to infection and cancer. Nat Rev Immunol 2019;19(12):747–60. link1

[ 6 ] Kerris EWJ, Hoptay C, Calderon T, Freishtat RJ. Platelets and platelet extracellular vesicles in hemostasis and sepsis. J Invest Med 2020;68 (4):813–20. link1

[ 7 ] Deppermann C, Kubes P. Start a fire, kill the bug: the role of platelets in inflammation and infection. Innate Immun 2018;24(6):335–48. link1

[ 8 ] Ali RA, Wuescher LM, Dona KR, Worth RG. Platelets mediate host defense against Staphylococcus aureus through direct bactericidal activity and by enhancing macrophage activities. J Immunol 2017;198(1):344–51. link1

[ 9 ] Ribeiro LS, Migliari Branco L, Franklin BS. Regulation of innate immune responses by platelets. Front Immunol 2019;10:1320. link1

[10] Valle-Jiménez X, Ramírez-Cosmes A, Aquino-Domínguez AS, Sánchez-Peña F, Bustos-Arriaga J, Romero-Tlalolini MDÁ, et al. Human platelets and megakaryocytes express defensin alpha 1. Platelets 2020;31(3):344–54. link1

[11] Pircher J, Czermak T, Ehrlich A, Eberle C, Gaitzsch E, Margraf A, et al. Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation. Nat Commun 2018;9(1):1523. link1

[12] Kwakman PHS, Krijgsveld J, de Boer L, Nguyen LT, Boszhard L, Vreede J, et al. Native thrombocidin-1 and unfolded thrombocidin-1 exert antimicrobial activity via distinct structural elements. J Biol Chem 2011;286(50):43506–14. link1

[13] Trier DA, Gank KD, Kupferwasser D, Yount NY, French WJ, Michelson AD, et al. Platelet antistaphylococcal responses occur through P2X1 and P2Y12 receptorinduced activation and kinocidin release. Infect Immun 2008;76(12):5706–13. link1

[14] Gaertner F, Ahmad Z, Rosenberger G, Fan S, Nicolai L, Busch B, et al. Migrating platelets are mechano-scavengers that collect and bundle bacteria. Cell 2017;171(6):1368–82. link1

[15] Rossaint J, Margraf A, Zarbock A. Role of platelets in leukocyte recruitment and resolution of inflammation. Front Immunol 2018;9:2712. link1

[16] Kim H, Conway EM. Platelets and complement cross-talk in early atherogenesis. Front Cardiovasc Med 2019;6:131. link1

[17] Ilkan Z, Watson S, Watson S, Mahaut-Smith M. P2X1 receptors amplify FccRIIainduced Ca2+ increases and functional responses in human platelets. Thromb Haemost 2018;118(2):369–80. link1

[18] Cognasse F, Nguyen KA, Damien P, McNicol A, Pozzetto B, Hamzeh-Cognasse H, et al. The inflammatory role of platelets via their TLRs and Siglec receptors. Front Immunol 2015;6:83. link1

[19] Berny-Lang MA, Jakubowski JA, Sugidachi A, Barnard MR, Michelson AD, Frelinger AL. P2Y12 receptor blockade augments glycoprotein IIb–IIIa antagonist inhibition of platelet activation, aggregation, and procoagulant activity. J Am Heart Assoc 2013;2(3):e000026. link1

[20] Kroll MH, Harris TS, Moake JL, Handin RI, Schafer AI. Von Willebrand factor binding to platelet GpIb initiates signals for platelet activation. J Clin Invest 1991;88(5):1568–73. link1

[21] Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015;28(3):603–61. link1

[22] Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol 2019;17:203–18. link1

[23] Seilie ES, Bubeck Wardenburg J. Staphylococcus aureus pore-forming toxins: the interface of pathogen and host complexity. Semin Cell Dev Biol 2017;72:101–16. link1

[24] Bhakdi S, Tranum-Jensen J. Alpha-toxin of Staphylococcus aureus. Microbiol Rev 1991;55(4):733–51. link1

[25] Fang RH, Luk BT, Hu CMJ, Zhang L. Engineered nanoparticles mimicking cell membranes for toxin neutralization. Adv Drug Deliv Rev 2015;90:69–80. link1

[26] Cheung GYC, Otto M. The potential use of toxin antibodies as a strategy for controlling acute Staphylococcus aureus infections. Expert Opin Ther Targets 2012;16(6):601–12. link1

[27] Muhammad F, Nguyen TDT, Raza A, Akhtar B, Aryal S. A review on nanoparticle-based technologies for biodetoxification. Drug Chem Toxicol 2017;40(4):489–97. link1

[28] Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. Adv Mater 2018;30(23):e1706759. link1

[29] Henry BD, Neill DR, Becker KA, Gore S, Bricio-Moreno L, Ziobro R, et al. Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice. Nat Biotechnol 2015;33(1):81–8. link1

[30] Hu CM, Fang RH, Copp J, Luk BT, Zhang L. A biomimetic nanosponge that absorbs pore-forming toxins. Nature Nanotechnol 2013;8(5):336–40. link1

[31] Chen Y, Zhang Y, Chen M, Zhuang J, Fang RH, Gao W, et al. Biomimetic nanosponges suppress in vivo lethality induced by the whole secreted proteins of pathogenic bacteria. Small 2019;15(6):1804994. link1

[32] Escajadillo T, Olson J, Luk BT, Zhang L, Nizet V. A red blood cell membrane-camouflaged nanoparticle counteracts streptolysin O-mediated virulence phenotypes of invasive group A Streptococcus. Front Pharmacol 2017;8:477. link1

[33] Wang F, Gao W, Thamphiwatana S, Luk BT, Angsantikul P, Zhang Q, et al. Hydrogel retaining toxin-absorbing nanosponges for local treatment of methicillin-resistant Staphylococcus aureus infection. Adv Mater 2015;27 (22):3437–43. link1

[34] Thamphiwatana S, Angsantikul P, Escajadillo T, Zhang Q, Olson J, Luk BT, et al. Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management. Proc Natl Acad Sci 2017;114(43):11488–93. link1

[35] Wuescher LM, Takashima A, Worth RG. A novel conditional platelet depletion mouse model reveals the importance of platelets in protection against Staphylococcus aureus bacteremia. J Thromb Haemost 2015;13 (2):303–13. link1

[36] Maurer S, Kopp HG, Salih HR, Kropp KN. Modulation of immune responses by platelet-derived ADAM10. Front Immunol 2020;11:44. link1

[37] Surewaard BGJ, Thanabalasuriar A, Zeng Z, Tkaczyk C, Cohen TS, Bardoel BW, et al. a-Toxin induces platelet aggregation and liver injury during Staphylococcus aureus sepsis. Cell Host Microbe 2018;24(2):271–84. link1

[38] Hu CM, Fang RH, Wang KC, Luk BT, Thamphiwatana S, Dehaini D, et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015;526 (7571):118–21. link1

[39] Thammavongsa V, Kim HK, Missiakas D, Schneewind O. Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 2015;13 (9):529–43. link1

[40] Buvelot H, Posfay-Barbe KM, Linder P, Schrenzel J, Krause KH. Staphylococcus aureus, phagocyte NADPH oxidase and chronic granulomatous disease. FEMS Microbiol Rev 2017;41(2):139–57. link1

[41] McInnes IB, Leung B, Wei XQ, Gemmell CC, Liew FY. Septic arthritis following Staphylococcus aureus infection in mice lacking inducible nitric oxide synthase. J Immunol 1998;160(1):308–15. link1

[42] Accarias S, Lugo-Villarino G, Foucras G, Neyrolles O, Boullier S, Tabouret G. Pyroptosis of resident macrophages differentially orchestrates inflammatory responses to Staphylococcus aureus in resistant and susceptible mice. Eur J Immunol 2015;45(3):794–806. link1

[43] Brown GT, Narayanan P, Li W, Silverstein RL, McIntyre TM. Lipopolysaccharide stimulates platelets through an IL-1 autocrine loop. J Immunol 2013;191 (10):5196–203. link1

[44] Pilsczek FH, Salina D, Poon KKH, Fahey C, Yipp BG, Sibley CD, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol 2010;185 (12):7413–25. link1

[45] Malachowa N, Kobayashi SD, Freedman B, Dorward DW, DeLeo FR. Staphylococcus aureus leukotoxin GH promotes formation of neutrophil extracellular traps. J Immunol 2013;191(12):6022–9. link1

[46] Carestia A, Kaufman T, Rivadeneyra L, Landoni VI, Pozner RG, Negrotto S, et al. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. J Leukoc Biol 2016;99(1):153–62. link1

[47] Denning NL, Aziz M, Gurien SD, Wang P. DAMPs and NETs in sepsis. Front Immunol 2019;10:2536. link1

[48] Hsu CC, Hsu RB, Ohniwa RL, Chen JW, Yuan CT, Chia JS, et al. Neutrophil extracellular traps enhance Staphylococcus aureus vegetation formation through interaction with platelets in infective endocarditis. Thromb Haemost 2019;119:786–96. link1

[49] Wei X, Gao J, Fang RH, Luk BT, Kroll AV, Dehaini D, et al. Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia. Biomaterials 2016;111:116–23. link1

[50] Wei X, Ying M, Dehaini D, Su Y, Kroll AV, Zhou J, et al. Nanoparticle functionalization with platelet membrane enables multifactored biological targeting and detection of atherosclerosis. ACS Nano 2018;12(1): 109–16. link1

[51] Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 2020;395 (10219):200–11. link1

[52] Palma P, Rello J. Precision medicine for the treatment of sepsis: recent advances and future prospects. Expert Rev Precis Med Drug Dev 2019;4 (4):205–13. link1

[53] Uppu DSSM, Ghosh C, Haldar J. Surviving sepsis in the era of antibiotic resistance: are there any alternative approaches to antibiotic therapy? Microb Pathog 2015;80:7–13.

Related Research