Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 20, Issue 1 doi: 10.1016/j.eng.2021.07.026

Hydration Characteristics and Microstructure of Alkali-Activated Slag Concrete: A Review

a School of Civil Engineering, Xi’an university of Architecture and Technology, Xi’an 710055, China
b State Key Laboratory of Green Building in Western China, Xi’an university of Architecture and Technology, Xi’an 710055, China
c School of Civil Engineering, Central South University, Changsha 410075, China

Received: 2021-01-14 Revised: 2021-05-31 Accepted: 2021-07-28 Available online: 2021-12-10

Next Previous

Abstract

Alkali-activated slag concrete (AASC) is a new green building material. The amount of CO2 produced by AASC is 1/5th of that produced by ordinary Portland cement concrete (OPCC). In addition, AASC promotes the reuse of slag and other wastes and saves resources. Furthermore, the scope of use of slag has been expanded. The progress of the research on the hydration characteristics, microstructure, interfacial transition zone, and pore structure of AASC based on the relevant literatures was analyzed and summarized in this study. The influences of the slag composition, the type and dosage of the alkali activator, and the curing conditions on the hydration characteristics and the microstructure of the AASC were discussed. Relatively few research results on the microstructure of AASC are available, and the relevant conclusions are not completely consistent. Moreover, there are many constraints on the development of AASC (e.g., complex composition of raw materials of slag, large shrinkage deformation, and low fluidity). Therefore, further research is required.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18

Fig. 19

Fig. 20

Fig. 21

Fig. 22

Fig. 23

References

[ 1 ] Hardjito D, Wallah S, Sumajouw D, Rangan B. On the development of fly ashbased geopolymer concrete. ACI Mater J 2004;101:467–72. link1

[ 2 ] Mehta PK. Greening of the concrete industry for sustainable development. Concr Int 2002;24(7):23–9. link1

[ 3 ] Vázquez-Rowe I, Ziegler-Rodriguez K, Laso J, Quispe I, Aldaco R, Kahhat R. Production of cement in Peru: understanding carbon-related environmental impacts and their policy implications. Resour Conserv Recycling 2019;142:283–92. link1

[ 4 ] Uwasu M, Hara K, Yabar H. World cement production and environmental implications. Environ Dev 2014;10:36–47. link1

[ 5 ] Abdalqader AF, Jin F, Al-Tabbaa A. Development of greener alkali-activated cement: utilisation of sodium carbonate for activating slag and fly ash mixtures. J Clean Prod 2016;113:66–75. link1

[ 6 ] Cabeza LF, Barreneche C, Miró L, Morera J, Bartolí E, Inés FA. Low carbon and low embodied energy materials in buildings: a review. Renew Sustain Energy Rev 2013;23:536–42. link1

[ 7 ] Fernández-Jiménez A, Palomo JG, Puertas F. Alkali-activated slag mortars: mechanical strength behaviour. Cement Concr Res 1999;29(8):1313–21. link1

[ 8 ] Chithiraputhiran S, Neithalath N. Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends. Constr Build Mater 2013;45(7):233–42. link1

[ 9 ] Chang JJ. A study on the setting characteristics of sodium silicate-activated slag pastes. Cement Concr Res 2003;33(7):1005–11. link1

[10] Altan E, Erdog˘an ST. Alkali activation of a slag at ambient and elevated temperatures. Cement Concr Compos 2012;34(2):131–9. link1

[11] Shi C, Roy D, Krivenko P. Alkali-activated cements and concretes. Los Angeles: CRC Press; 2006. link1

[12] Zhang YJ, Yang MY, Kang L, Zhang L, Zhang K. Research progresses of new type alkali-activated cementitious material catalyst. J Inorg Mater 2016;31 (3):225–33. link1

[13] Bakharev T, Sanjayan JG, Cheng YB. Alkali activation of Australian slag cements. Cement Concr Res 1999;29(1):113–20. link1

[14] Bakharev T, Sanjayan JG, Cheng YB. Sulfate attack on alkali-activated slag concrete. Cement Concr Res 2002;32(2):211–6. link1

[15] Bakharev T, Sanjayan JG, Cheng YB. Resistance of alkali-activated slag concrete to acid attack. Cement Concr Res 2003;33(10):1607–11. link1

[16] Miller SA, John VM, Pacca SA, Horvath A. Carbon dioxide reduction potential in the global cement industry by 2050. Cement Concr Res 2018;114:115–24. link1

[17] Garcia-Lodeiro I, Fernández-Jimenez A, Pena P, Palomo A. Alkaline activation of synthetic aluminosilicate glass. Ceram Int 2014;40(4):5547–58. link1

[18] Provis JL, van Deventer JSJ. Alkali activated materials, RILEM state-of-the-art reports 13. Dordrecht: Springer; 2014. link1

[19] Schilling PJ, Roy A, Eaton HC, Malone PG, Brabston WN. Microstructure, strength, and reaction products of ground granulated blast-furnace slag activated by highly concentrated NaOH solution. J Mater Res 1994;9 (1):188–97. link1

[20] Fang S, Lam ESS, Li B, Wu B. Effect of alkali contents, moduli and curing time on engineering properties of alkali activated slag. Constr Build Mater 2020;249:118799. link1

[21] Roy DM, Silsbee MR, Wolfe-Confer D. New rapid setting alkali activated cement compositions. MRS Online Proc Libr 1989;179:179–203. link1

[22] Stone MD, Hunsucker DQ. Construction and interim performance of a pyrament cement concrete bridge deck. Report. Lexington: Kentucky Transportation Center; 1993 Jun. Report No.: KTC-93-17.

[23] Zhang P, Wang K, Li Q, Wang J, Ling Y. Fabrication and engineering properties of concretes based on geopolymers/alkali-activated binders–a review. J Clean Prod 2020;258:120896. link1

[24] Tänzer R, Buchwald A, Stephan D. Effect of slag chemistry on the hydration of alkali-activated slag: comparison with ordinary Portland cement blastfurnace slag. Mater Struct 2015;48(3):629–41. link1

[25] Bellmann F, Stark J. Activation of blast furnace slag by a new method. Cement Concr Res 2009;39(8):644–50. link1

[26] Manjunath R, Narasimhan MC, Umesh K, Kumar S, Bala Bharathi UK. Studies on development of high performance, self-compacting alkali activated slag concrete mixes using industrial wastes. Constr Build Mater 2019;198:133–47. link1

[27] Glukhovsky VD, Rostovkaya GS, Rumyna GV. High strength slag-alkali cement. In: Proceedings of the 7th International Congress on the Chemistry of Cements; 1980 Jan 1; Paris, France. Paris: Editions Septima; 1980. link1

[28] Turner LK, Collins FG. Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr Build Mater 2013;43:125–30. link1

[29] Soriano L, Font A, Tashima MM, et al. Almond-shell biomass ash (ABA): a greener alternative to the use of commercial alkaline reagents in alkaliactivated cement. Constr Build Mater. 2021;290:123351. link1

[30] Bernal SA, Mejía de Gutiérrez R, Pedraza AL, PROVIS J, Rodriguez ED, Delvasto S. Effect of binder content on the performance of alkali-activated slag concretes. Cement Concr Res 2011;41(1):1–8. link1

[31] Jamieson E, Kealley CS, van Riessen A, Hart RD. Optimising ambient setting bayer derived fly ash geopolymers. Materials 2016;9(5):392. link1

[32] Xu F, Wei H, Qian W, Cai Y. Composite alkaline activator on cemented soil: multiple tests and mechanism analyses. Constr Build Mater 2018;188:433–43. link1

[33] Alonso S, Palomo A. Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio. Mater Lett 2001;47(1–2):55–62. link1

[34] Mehdizadeh H, Najafi Kani E, Sanchez AP, Fernandez-Jimenez A. Rheology of activated phosphorus slag with lime and alkaline salts. Cement Concr Res 2018;113:121–9. link1

[35] Kaur K, Singh J, Kaur M. Compressive strength of rice husk ash based geopolymer: the effect of alkaline activator. Constr Build Mater 2018;169:188–92. link1

[36] Jin Y, Feng W, Zheng D, Dong Z, Cui H, Li M, et al. Study on the interaction mechanism between slags and alkali silicate activators: a hydration kinetics approach. Constr Build Mater 2020;250:118900. link1

[37] Yu L. Study on the preparation and performance of alkali-activated slag cementitious materials [dissertation]. Zhengzhou: Zhengzhou University; 2010. Chinese. link1

[38] Zheng JR, Yao ZY, Liu LN. Experimental study on chemical shrinkage or expansion of alkali activated cementitious materials. Bull Chin Ceram Soc 2009;28(1):49–53. Chinese. link1

[39] Collins F, Sanjayan JG. Microcracking and strength development of alkali activated slag concrete. Cement Concr Compos 2001;23(4–5):345–52. link1

[40] Angulo-Ramírez DE, Mejía de Gutiérrez R, Puertas F. Alkali-activated Portland blast-furnace slag cement: mechanical properties and hydration. Constr Build Mater 2017;140:119–28. link1

[41] Fernández-Jiménez A, Puertas F. Alkali-activated slag cements: kinetic studies. Cement Concr Res 1997;27(3):359–68. link1

[42] Fernandez-Jimenez A, Puertas F, Arteaga A. Determination of kinetic equations of alkaline activation of blast furnace slag by means of calorimetric data. J Therm Anal Calorim 1998;52(3):945–55. link1

[43] Bernal SA, Provis JL, Rose V, Mejía de Gutierrez R. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cement Concr Compos 2011;33(1):46–54. link1

[44] Deir E, Gebreziabiher BS, Peethamparan S. Influence of starting material on the early age hydration kinetics and composition of binding gel in alkali activated binder systems. Cement Concr Compos 2014;48:108–17. link1

[45] Altan E, Erdogan ST. Alkali activation of a slag at ambient and elevated temperatures. Cement Concr Compos 2012;34(2):131–9. link1

[46] Haha MB, Lothenbach B, Le Saout G, Winnefeld F. Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast furnace slags. Cement Concr Res 2012;42(1):74–83. link1

[47] Krizan D, Zivanovic B. Effects of dosage and modulus of water glass on early hydration of alkali-slag cements. Cement Concr Res 2002;32(8):1181–8. link1

[48] Shi C, Day RL. Some factors affecting early hydration of alkali-slag cements. Cement Concr Res 1996;26(3):439–47. link1

[49] Brough AR, Atkinson A. Sodium silicate-based, alkali-activated slag mortars: part I. strength, hydration and microstructure. Cement Concr Res 2002;32 (6):865–79. link1

[50] Bakharev T, Sanjayan JG, Cheng YB. Effect of elevated temperature curing on properties of alkali-activated slag concrete. Cement Concr Res 1999;29 (10):1619–25. link1

[51] Haha MB, Lothenbach B, Le Saout G, Winnefeld F. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—part II: effect of Al2O3. Cement Concr Res 2012;42(1):74–83. link1

[52] Wang SD, Scrivener KL, Pratt PL. Factors affecting the strength of alkaliactivated slag. Cement Concr Res 1994;24(6):1033–43. link1

[53] Gruskovnjak A, Lothenbach B, Winnefeld F, Figi R, Ko SC, Adler M, et al. Hydration mechanisms of supersulfated slag cements. Cement Concr Res 2008;38(7):983–92. link1

[54] Sakulich AR, Anderson E, Schauer CL, Barsoum MW. Influence of Si:Al ratio on the microstructural and mechanical properties of a fine-limestone aggregate alkali-activated slag concrete. Mater Struct 2010;43(7):1025–35. link1

[55] Haha MB, Lothenbach B, Le Saout G, et al. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part I: effect of MgO. Cement Concr Res 2011;41(9):955–63. link1

[56] Bernal SA, San Nicolas R, Myers RJ, Mejía de Gutiérrez R, Puertas F, van Deventer JSJ, et al. MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cement Concr Res 2014;57:33–43. link1

[57] Ke X, Bernal SA, Provis JL. Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides. Cement Concr Res 2016;81:24–37. link1

[58] Katyal NK, Ahluwalia SC, Parkash R. Effect of TiO2 on the hydration of tricalcium silicate. Cement Concr Res 1999;29(11):1851–5. link1

[59] Wassing W. Relationship between the chemical reactivity of granulated blast furnace slags and the mortar standard compressive strength of the blast furnace cements produced from them. Chem Int 2003;1(5):95–109. link1

[60] Li C, Sun H, Li L. A review: the comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cement Concr Res 2010;40(9):1341–9. link1

[61] Cao RL, Zhang SQ, Banthia N, Zhang Y, Zhang Z. Interpreting the early-age reaction process of alkali-activated slag by using combined embedded ultrasonic measurement, thermal analysis, XRD, FTIR and SEM. Compos Part B Eng 2020;186:107840. link1

[62] Shi C, Day RL. A calorimetric study of early hydration of alkali-slag cements. Cement Concr Res 1995;25(6):1333–46. link1

[63] Pacheco-Torgal F, Castro-Gomes J, Jalali S. Alkali-activated binders: a review. Part 1. historical background, terminology, reaction mechanisms and hydration products. Constr Build Mater 2008;22(7):1305–14. link1

[64] Gijbels K, Pontikes Y, Samyn P, Schreurs S, Schroeyers W. Effect of NaOH content on hydration, mineralogy, porosity and strength in alkali/sulfateactivated binders from ground granulated blast furnace slag and phosphogypsum. Cement Concr Res 2020;132:106054. link1

[65] Li N, Shi C, Zhang Z. Understanding the roles of activators towards setting and hardening control of alkali-activated slag cement. Compos Part B Eng 2019;171:34–45. link1

[66] Roy DM. Alkali-activated cements opportunities and challenges. Cement Concr Res 1999;29(2):249–54. link1

[67] Tan HB, Deng XF, He XY, Zhang J, Zhang X, Su Y, et al. Compressive strength and hydration process of wet-grinded granulated blast-furnace slag activated by sodium sulfate and sodium carbonate. Cement Concr Compos 2019;97:387–98. link1

[68] Mobasher N, Bernal SA, Provis JL. Structural evolution of an alkali sulfate activated slag cement. J Nucl Mater 2016;468:97–104. link1

[69] Rashad AM, Bai Y, Basheer PAM, Milestone NB, Collier NC. Hydration and properties of sodium sulfate activated slag. Cement Concr Compos 2013;37:20–9. link1

[70] Provis JL, Bernal SA. Geopolymers and related alkali-activated materials. Annu Rev Mater Res 2014;44(1):299–327. link1

[71] Bernal SA, Provis JL, Myers RJ, San Nicolas R, van Deventer JSJ. Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders. Mater Struct 2015;48(3):517–29. link1

[72] Kim JC, Hong SY. Liquid concentration changes during slag cement hydration by alkali activation. Cement Concr Res 2001;31(2):283–5. link1

[73] Ravikumar D, Neithalath N. Reaction kinetics in sodium silicate powder and liquid activated slag binders evaluated using isothermal calorimetry. Thermochim Acta 2012;546:32–43. link1

[74] Zhou H, Wu X, Xu Z, Tang M. Kinetic study on hydration of alkali-activated slag. Cement Concr Res 1993;23(6):1253–8. link1

[75] Gebregziabiher BS, Thomas RJ, Peethamparan S. Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders. Constr Build Mater 2016;113:783–93. link1

[76] Gebregziabiher BS, Thomas R, Peethamparan S. Very early-age reaction kinetics and microstructural development in alkali-activated slag. Cement Concr Compos 2015;55:91–102. link1

[77] Rothstein D, Thomas JJ, Christensen BJ, Jennings HM. Solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pore solutions as a function of hydration time. Cement Concr Res 2002;32(10):1663–71. link1

[78] Fernández-Jiménez A, Puertas F. Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements. Adv Cement Res 2003; 15(3):129–36. link1

[79] Song S, Sohn D, Jennings HM, Mason TO. Hydration of alkali-activated ground granulated blast furnace slag. J Mater Sci 2000;35(1):249–57. link1

[80] Gruskovnjak A, Lothenbach B, Holzer L, Figi R, Winnefeld F. Hydration of alkali-activated slag: comparison with ordinary Portland cement. Adv Cement Res 2006;18(3):119–28. link1

[81] Sohn SD, Jennings HM. Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cement Concr Res 1999;29(2):159–70. link1

[82] Zˇivica V. Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures. Constr Build Mater 2007;21(7):1463–9. link1

[83] Aydın S, Baradan B. Mechanical and microstructural properties of heat cured alkali-activated slag mortars. Mater Des 2012;35:374–83. link1

[84] Fernández-Jiménez A, Puertas F. Influence of the activator concentration on the kinetics of the alkaline activation process of a blast-furnace slag. Mater Constr 2010;47:246. link1

[85] Wang SD, Pu XC, Scrivener KL, Pratt PL. Alkali-activated slag cement and concrete: a review of properties and problems. Adv Cement Res 1995;7(27):93–102. link1

[86] Fernández-Jiménez A, Puertas F, Sobrados I, Sanz J. Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator. J Am Ceram Soc 2003;86(8):1389–94. link1

[87] Myers RJ, Bernal SA, San Nicolas R, Provis JL. Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the crosslinked substituted tobermorite model. Langmuir 2013;29(17):5294–306. link1

[88] Richardson IG, Brough AR, Groves GW, Dobson CM. The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C–S–H) paste. Cement Concr Res 1994;24 (5):813–29. link1

[89] Puertas F, Palacios M, Manzano H, Dolado JS, Rico A, Rodríguez J. A model for the C–A–S–H gel formed in alkali-activated slag cements. J Eur Ceram Soc 2011;31(12):2043–56. link1

[90] Jiang DB, Li XG, Lv Y, Li CJ, Jiang WG, Liu ZL, et al. Autogenous shrinkage and hydration property of alkali activated slag pastes containing superabsorbent polymer. Cement Concr Res. 2021;149:106581. link1

[91] Wang SD, Scrivener KL. Hydration products of alkali-activated slag cement. Cement Concr Res 1995;25(3):561–71. link1

[92] Bernal SA, Provis JL, Walkley B, San Nicolas R, Gehman JD, Brice DG, et al. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cement Concr Res 2013;53:127–44. link1

[93] Bernal SA, de Gutierrez RM, Provis JL, Rose V. Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cement Concr Res 2010;40(6):898–907. link1

[94] Zhang YJ, Zhao YL, Li HH, Xu DL. Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag. J Mater Sci 2008;43(22):7141–7. link1

[95] Puertas F, Palacios M, Manzano H, et al. C–A–S–H gels formed in alkaliactivated slag cement pastes. Structure and effect on cement properties and durability. Matec Web Conf 2014;11:01002.

[96] Yang LY, Jia ZJ, Zhang YM, Dai JG. Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes. Cement Concr Compos 2015;57:1–7. link1

[97] Schilling PJ, Butler LG, Roy A, Eaton HC. 29Si and 27Al MAS-NMR of NaOHactivated blast-furnace slag. J Am Ceram Soc 1994;77(9):2363–8. link1

[98] Richardson IG. Tobermorite/jennite- and tobermorite/calcium hydroxidebased models for the structure of C–S–H: applicability to hardened pastes of tricalcium silicate, b-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cement Concr Res 2004;34(9):1733–77. link1

[99] Pardal X, Brunet F, Charpentier T, Pochard I, Nonat A. 27Al and 29Si solid-state NMR characterization of calcium-aluminosilicate-hydrate. Inorg Chem 2012;51(3):1827–36. link1

[100] Renaudin G, Russias J, Leroux F, Cau-dit-Coumes C, Frizon F. Structural characterization of C–S–H and C–A–S–H samples-part II: local environment investigated by spectroscopic analyses. J Solid State Chem 2009;182 (12):3320–9. link1

[101] Escalante-García J, Fuentes AF, Gorokhovsky A, Fraire-Luna PE, MendozaSuarez G. Hydration products and reactivity of blast-furnace slag activated by various alkalis. J Am Ceram Soc 2003;86(12):2148–53. link1

[102] Bonk F, Schneider J, Cincotto MA, Panepucci H. Characterization by multinuclear high-resolution NMR of hydration products in activated blastfurnace slag pastes. J Am Ceram Soc 2003;86(10):1712–9. link1

[103] Palacios M, Puertas F. Effect of carbonation on alkali-activated slag paste. J Am Ceram Soc 2006;89(10):3211–21. link1

[104] Häkkinen T. The influence of slag content on the microstructure, permeability and mechanical properties of concrete: part 1. microstructural studies and basic mechanical properties. Cement Concr Res 1993;23(2):407–21. link1

[105] Lothenbach B, Gruskovnjak A. Hydration of alkali-activated slag: thermodynamic modelling. Adv Cement Res 2007;19(2):81–92. link1

[106] Chen W, Brouwers H. The hydration of slag, part 1: reaction models for alkaliactivated slag. J Mater Sci 2007;42(2):428–43. link1

[107] Mobasher N, Bernal SA, Kinoshita H, Provis JL. Gamma irradiation resistance of early age Ba(OH)2–Na2SO4–slag cementitious grouts. J Nucl Mater 2016;482:266–77. link1

[108] Bai Y, Collier NC, Milestone NB, Yang CH. The potential for using slags activated with near neutral salts as immobilisation matrices for nuclear wastes containing reactive metals. J Nucl Mater 2011;413(3):183–92. link1

[109] Rashad AM, Bai Y, Basheer PAM, Collier NC, Milestone NB. Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature. Cement Concr Res 2012;42(2):333–43. link1

[110] Shi C, Wu X, Tang M. Hydration of alkali-slag cements at 150 C. Cement Concr Res 1991;21(1):91–100. link1

[111] Sugama T, Brothers L. Sodium-silicate-activated slag for acid-resistant geothermal well cements. J Adv Cem Res 2004;16(2):77–87. link1

[112] Jiang WM. Alkali-activated cementitious materials: mechanisms, microstructure and properties [dissertation]. University Park: The Pennsylvania State University; 1997. link1

[113] Palomo AJL, Shi C. Advances in understanding alkali-activated materials. Cement Concr Res 2015;78:110–25. link1

[114] Wang SY, Mccaslin E, White CE. Effects of magnesium content and carbonation on the multiscale pore structure of alkali-activated slags. Cement Concr Res 2020;130:105979. link1

[115] Ju C, Liu YS, Jia MJ, Yu K, Yu Z, Yang Y. Effect of calcium oxide on mechanical properties and microstructure of alkali-activated slag composites at sub-zero temperature. J Build Eng 2020;32:101561. link1

[116] Wang JB, Du P, Zhou ZH, Xu D, Xie N, Cheng X. Effect of nano-silica on hydration, microstructure of alkali-activated slag. Constr Build Mater 2019;220:110–8. link1

[117] Zhang Y, Wan X, Hou D, Zhao T, Cui Y. The effect of mechanical load on transport property and pore structure of alkali-activated slag concrete. Constr Build Mater 2018;189:397–408. link1

[118] Lee NK, Jang JG, Lee HK. Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages. Cement Concr Compos 2014;53:239–48. link1

[119] Hu X, Shi CJ, Shi ZG, Zhang LY. Compressive strength, pore structure and chloride transport properties of alkali-activated slag/fly ash mortars. Cement Concr Compos 2019;104:103392. link1

[120] Hu X, Shi C, Liu X, Zhang Z. Studying the effect of alkali dosage on microstructure development of alkali-activated slag pastes by electrical impedance spectroscopy (EIS). Constr Build Mater 2020;261:119982. link1

[121] Ye HL, Fu CQ, Yang GJ. Influence of dolomite on the properties and microstructure of alkali-activated slag with and without pulverized fly ash. Cement Concr Compos 2019;103:224–32. link1

[122] Jiao ZZ, Wang Y, Zheng WZ, Huang W. Effect of the activator on the performance of alkali-activated slag mortars with pottery sand as fine aggregate. Constr Build Mater 2019;197:83–90. link1

[123] Wei XB, Li DQ, Ming F, Yang C, Chen L, Liu Y. Influence of low-temperature curing on the mechanical strength, hydration process, and microstructure of alkali-activated fly ash and ground granulated blast furnace slag mortar. Constr Build Mater 2021;269:121811. link1

[124] Gu YM, Fang YH, You D, Gong Y, Zhu C. Properties and microstructure of alkali-activated slag cement cured at below- and about-normal temperature. Constr Build Mater 2015;79:1–8. link1

[125] Fang GH, Zhang MZ. The evolution of interfacial transition zone in alkaliactivated fly ash-slag concrete. Cement Concr Res 2020;129:105963. link1

[126] Brough AR, Atkinson A. Automated identification of the aggregate– paste interfacial transition zone in mortars of silica sand with Portland or alkali-activated slag cement paste. Cement Concr Res 2000;30(6): 849–54. link1

[127] Nicolas RS, Bernal SA, Mejía de Gutiérrez R, van Deventer JSJ, Provis JL. Distinctive microstructural features of aged sodium silicate-activated slag concretes. Cement Concr Res 2014;65:41–51. link1

[128] Breton D, Carles-Gibergues A, Ballivy G, Grandet J. Contribution to the formation mechanism of the transition zone between rock–cement paste. Cement Concr Res 1993;23(2):335–46. link1

[129] Scrivener KL, Nemati KM. The percolation of pore space in the cement paste/aggregate interfacial zone of concrete. Cement Concr Res 1996;26(1): 35–40. link1

[130] Cwirzen A, Penttala V. Aggregate-cement paste transition zone properties affecting the salt–frost damage of high-performance concretes. Cement Concr Res 2005;35(4):671–9. link1

[131] Leemann A, Münch B, Gasser P, Holzer L. Influence of compaction on the interfacial transition zone and the permeability of concrete. Cement Concr Res 2006;36(8):1425–33. link1

[132] Saedi M, Behfarnia K, Soltanian H. The effect of the blaine fineness on the mechanical properties of the alkali-activated slag cement. J Build Eng 2019;26:100897. link1

[133] Rakhimova NR, Rakhimov RZ, Naumkina NI, Khuzin AF, Osin YN. Influence of limestone content, fineness, and composition on the properties and microstructure of alkali-activated slag cement. Cement Concr Compos 2016;72:268–74. link1

[134] Xu Z, Zhou Z, Du P, Cheng X. Effects of nano-limestone on hydration properties of tricalcium silicate. J Therm Anal Calorim 2017;129(1):75–83. link1

[135] Qing Y, Zenan Z, Deyu K, Rongshen C. Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr Build Mater 2007;21(3):539–45. link1

[136] Gu YM, Fang YH. Shrinkage, cracking, shrinkage reducing and toughening of alkali-activated slag cement–a short review. J Chin Ceram Soc 2012;40:76–84. Chinese. link1

[137] Li ZM, Wyrzykowski M, Dong H, Granja J, Azenha M, Lura P, et al. Internal curing by superabsorbent polymers in alkali-activated slag. Cement Concr Res 2020;135:106123. link1

Related Research