Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 21, Issue 2 doi: 10.1016/j.eng.2021.08.024

Freezing-Extraction/Vacuum-Drying Method for Robust and Fatigue-Resistant Polyimide Fibrous Aerogels and Their Composites with Enhanced Fire Retardancy

a Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
b Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
c School of New Energy Science and Engineering, Xinyu University, Xinyu 330020, China

Received: 2021-02-23 Revised: 2021-06-12 Accepted: 2021-08-24 Available online: 2021-12-10

Next Previous

Abstract

In the rapid development of modern materials, there is a great need for novel energy-saving, time-saving, cost-saving, and facile approaches to fabricate light, low-density, and high-porosity aerogels with excellent mechanical and thermal performance. In this work, a freeze-extraction method combined with normal vacuum drying (VD), using short electrospun polyimide (PI) fibers as a supporting skeleton, was developed to prepare high-performance PI fibrous aerogels (PIFAs) without the need for a special drying process. The resulting PIFAs exhibit low density (≤ 52.8 mg·cm–3) and high porosity (> 96%). The PIFAs are highly fatigue resistant, with cycling compression for at least 20 000 cycles and a low energy-loss coefficient. A thermal conductivity of 40.4 mW·m–1·K–1 was obtained for a PIFA with a density of 39.1 mg·cm–3. Further modification of the PIFAs with polysilazane led to enhanced fire resistance and a high residue (> 70%) in a nitrogen atmosphere. These excellent properties make PIFAs and their composites promising candidates for lightweight construction, thermal insulating, and fireproof layers for the construction industry, aviation, and aerospace industries, as well as for high-temperature reaction catalyst carriers. In addition, the proposed freezing-extraction/VD approach can be extended to other material systems to provide savings in energy, time, and costs.

SupplementaryMaterials

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

References

[ 1 ] Chen Y, Zhang L, Yang Y, Pang B, Xu W, Duan G, et al. Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, applications. Adv Mater 2021;33(11):2005569. link1

[ 2 ] Chen Y, Yang Y, Xiong Y, Zhang L, Xu W, Duan G, et al. Porous aerogel and sponge composites: assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 2021;38:101204. link1

[ 3 ] Si Y, Yu J, Tang X, Ge J, Ding B. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat Commun 2014;5(1):5802. link1

[ 4 ] Zhang D, Cai J, Xu W, Dong Q, Li Y, Liu G, et al. Synthesis, characterization and adsorption property of cellulose nanofiber-based hydrogels. J For Eng 2019;4 (2):92–8. Chinese. link1

[ 5 ] Jiang S, Agarwal S, Greiner A. Low-density open cellular sponges as functional materials. Angew Chem Int Ed Engl 2017;56(49):15520–38. link1

[ 6 ] Zheng C, Zhu S, Lu Y, Mei C, Xu X, Yue Y, et al. Synthesis and characterization of cellulose nanofibers/polyacrylic acid-polyacrylamide double network electroconductive hydrogel. J For Eng 2020;5(4):93–100. Chinese. link1

[ 7 ] Si Y, Wang X, Dou L, Yu J, Ding B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci Adv 2018;4(4):eaas8925. link1

[ 8 ] Jiang S, Uch B, Agarwal S, Greiner A. Ultralight, thermally insulating, compressible polyimide fiber assembled sponges. ACS Appl Mater Interfaces 2017;9(37):32308–15. link1

[ 9 ] Duan G, Jiang S, Jérôme V, Wendorff JH, Fathi A, Uhm J, et al. Ultralight, soft polymer sponges by self-assembly of short electrospun fibers in colloidal dispersions. Adv Funct Mater 2015;25(19):2850–6. link1

[10] Zhou L, Zhou H, Li J, Tan S, Chen P, Xu Z. Preparation and properties of nanocellulose-based oil-absorbing aerogels. J For Eng 2019;4(1):67–73. Chinese. link1

[11] Shang Q, Chen J, Yang X, Liu C, Hu Y, Zhou Y. Fabrication and oil absorbency of superhydrophobic magnetic cellulose aerogels. J For Eng 2019;4(6):105–11. Chinese. link1

[12] Shang Q, Hu Y, Liu C, Yang X, Zhou Y. Fabrication of superhydrophobic cellulose composite aerogels for oil/water separation. J For Eng 2019;4 (3):86–92. Chinese. link1

[13] Wang L, Qiu Y, Lv H, Si Y, Liu L, Zhang Qi, et al. 3D superelastic scaffolds constructed from flexible inorganic nanofibers with self-fitting capability and tailorable gradient for bone regeneration. Adv Funct Mater 2019;29 (31):1901407. link1

[14] Xu T, Ding Y, Wang Z, Zhao Y, Wu W, Fong H, et al. Three-dimensional and ultralight sponges with tunable conductivity assembled from electrospun nanofibers for a highly sensitive tactile pressure sensor. J Mater Chem C 2017;5(39):10288–94. link1

[15] Si Y, Wang X, Yan C, Yang L, Yu J, Ding B. Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressuresensitivity. Adv Mater 2016;28(43):9512–8. link1

[16] Guo H, Chen Y, Li Y, Zhou W, Xu W, Pang L, et al. Electrospun fibrous materials and their applications for electromagnetic interference shielding: a review. Compos Part A Appl Sci Manuf 2021;143:106309. link1

[17] Chen Y, Zhang L, Mei C, Li Y, Duan G, Agarwal S, et al. Wood-inspired anisotropic cellulose nanofibril composite sponges for multifunctional applications. ACS Appl Mater Interfaces 2020;12(31):35513–22. link1

[18] Zou Y, Zhao J, Zhu J, Guo X, Chen P, Duan G, et al. A mussel-inspired polydopamine-filled cellulose aerogel for solar-enabled water remediation. ACS Appl Mater Interfaces 2021;13(6):7617–24. link1

[19] Deuber F, Mousavi S, Federer L, Hofer M, Adlhart C. Exploration of ultralight nanofiber aerogels as particle filters: capacity and efficiency. ACS Appl Mater Interfaces 2018;10(10):9069–76. link1

[20] Qian Z, Wang Z, Chen Yi, Tong S, Ge M, Zhao N, et al. Superelastic and ultralight polyimide aerogels as thermal insulators and particulate air filters. J Mater Chem A 2018;6(3):828–32. link1

[21] Zhao X, Yang F, Wang Z, Ma P, Dong W, Hou H, et al. Exploration of the electrical conductivity of double-network silver nanowires/polyimide porous low-density compressible sponges. Compos Part B Eng 2020;182:107624. link1

[22] Jiang S, Reich S, Uch B, Hu P, Agarwal S, Greiner A. Exploration of the electrical conductivity of double network silver nanowires-polyimide porous low density compressible sponges. ACS Appl Mater Interfaces 2017;9 (39):34286–93. link1

[23] Jiang S, Cheong JY, Nam JS, Kim ID, Agarwal S, Greiner A. High-density fibrous polyimide sponges with superior mechanical and thermal properties. ACS Appl Mater Interfaces 2020;12(16):19006–14. link1

[24] Ren RP, Wang Z, Ren J, Lv YK. Highly compressible polyimide/graphene aerogel for efficient oil/water separation. J Mater Sci 2019;54(7):5918–26. link1

[25] Cheong JY, Benker L, Zhu J, Youn DY, Hou H, Agarwal S, et al. Generalized and feasible strategy to prepare ultra-porous, low density, compressible carbon nanoparticle sponges. Carbon 2019;154:363–9. link1

[26] Shen Y, Wang L, Liu F, Liu H, Li D, Liu Q, et al. Solvent vapor strengthened polyimide nanofiber-based aerogels with high resilience and controllable porous structure. ACS Appl Mater Interfaces 2020;12(47):53104–14. link1

[27] Pantoja M, Boynton N, Cavicchi KA, Dosa B, Cashman JL, Meador MAB. Increased flexibility in polyimide aerogels using aliphatic spacers in the polymer backbone. ACS Appl Mater Interfaces 2019;11(9):9425–37. link1

[28] Yuan Z, Lin H, Qian X, Shen J. Converting a dilute slurry of hollow tube-like papermaking fibers into dynamic hydrogels. J Bioresour Bioprod 2019;4 (4):214–21. link1

[29] Jiang Q, Liao X, Yang J, Wang G, Chen J, Tian C, et al. A two-step process for the preparation of thermoplastic polyurethane/graphene aerogel composite foams with multi-stage networks for electromagnetic shielding. Compos Commun 2020;21:100416. link1

[30] Guo L, Zhang Z, Li M, Kang R, Chen Y, Song G, et al. Extremely high thermal conductivity of carbon fiber/epoxy with synergistic effect of MXenes by freezedrying. Compos Commun 2020;19:134–41. link1

[31] Han X, Wang Z, Ding L, Chen L, Wang F, Pu J, et al. Water molecule-induced hydrogen bonding between cellulose nanofibers toward highly strong and tough materials from wood aerogel. Chin Chem Lett 2021;32(10):3105–8. link1

[32] Miao X, Lin J, Bian F. Utilization of discarded crop straw to produce cellulose nanofibrils and their assemblies. J Bioresour Bioprod 2020;5(1):26–36. link1

[33] Wang Z, Dai Z, Wu J, Zhao N, Xu J. Vacuum-dried robust bridged silsesquioxane aerogels. Adv Mater 2013;25(32):4494–7. link1

[34] Li C, Qiu L, Zhang B, Li D, Liu CY. Robust vacuum-/air-dried graphene aerogels and fast recoverable shape-memory hybrid foams. Adv Mater 2016;28 (7):1510–6. link1

[35] Yu ZL, Li GC, Fechler N, Yang N, Ma ZY, Wang X, et al. Polymerization under hypersaline conditions: a robust route to phenolic polymer-derived carbon aerogels. Angew Chem Int Ed Engl 2016;55(47):14623–7. link1

[36] Lee J, Chang JY. Preparation of a compressible and hierarchically porous polyimide sponge via the sol-gel process of an aliphatic tetracarboxylic dianhydride and an aromatic triamine. Chem Commun 2016;52 (68):10419–22. link1

[37] Yang G, Ning T, Zhao W, Deng W, Liu X. Robust ambient pressure dried polyimide aerogels and their graphene oxide directed growth of 1D–2D nanohybrid aerogels using water as the only solvent. RSC Adv 2017;7 (26):16210–6. link1

[38] Xu X, Zhang Q, Yu Y, Chen W, Hu H, Li H. Naturally dried graphene aerogels with superelasticity and tunable Poisson’s ratio. Adv Mater 2016;28 (41):9223–30. link1

[39] Yang H, Li Z, Lu B, Gao J, Jin X, Sun G, et al. Reconstruction of inherent graphene oxide liquid crystals for large-scale fabrication of structure-intact graphene aerogel bulk toward practical applications. ACS Nano 2018;12(11):11407–16. link1

[40] Yang H, Zhang T, Jiang M, Duan Y, Zhang J. Ambient pressure dried graphene aerogels with superelasticity and multifunctionality. J Mater Chem A 2015;3 (38):19268–72. link1

[41] Yang H, Li Z, Sun G, Jin X, Lu B, Zhang P, et al. Superplastic air-dryable graphene hydrogels for wet-press assembly of ultrastrong superelastic aerogels with infinite macroscale. Adv Funct Mater 2019;29(26):1901917. link1

[42] Liao X, Hu P, Agarwal S, Greiner A. Impact of the fiber length distribution on porous sponges originating from short electrospun fibers made from polymer yarn. Macromol Mater Eng 2020;305(2):1900629. link1

[43] Fan W, Zuo L, Zhang Y, Chen Y, Liu T. Mechanically strong polyimide/carbon nanotube composite aerogels with controllable porous structure. Compos Sci Technol 2018;156:186–91. link1

[44] Fan W, Zhang X, Zhang Yi, Zhang Y, Liu T. Lightweight, strong, and superthermal insulating polyimide composite aerogels under high temperature. Compos Sci Technol 2019;173:47–52. link1

[45] Zhao X, Yang F, Wang Z, Ma P, Dong W, Hou H, et al. Mechanically strong and thermally insulating polyimide aerogels by homogeneity reinforcement of electrospun nanofibers. Compos Part B Eng 2020;182:107624. link1

[46] Zhu Z, Yao H, Wang F, Dong J, Wu K, Cao J, et al. Fiber reinforced polyimide aerogel composites with high mechanical strength for high temperature insulation. Macromol Mater Eng 2019;304(5):1800676. link1

[47] Qian Z, Yang M, Li R, Li D, Zhang J, Xiao Y, et al. Fire-resistant, ultralight, superelastic and thermally insulated polybenzazole aerogels. J Mater Chem A 2018;6(42):20769–77. link1

[48] Song J, Chen C, Yang Z, Kuang Y, Li T, Li Y, et al. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 2018;12 (1):140–7. link1

[49] Jia C, Li L, Liu Y, Fang B, Ding H, Song J, et al. Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nat Commun 2020;11(1):3732. link1

[50] Xie C, He L, Shi Y, Guo ZX, Qiu T, Tuo X. From monomers to a lasagna-like aerogel monolith: an assembling strategy for aramid nanofibers. ACS Nano 2019;13(7):7811–24. link1

[51] Zhang X, Li W, Song P, You B, Sun G. Double-cross-linking strategy for preparing flexible, robust, and multifunctional polyimide aerogel. Chem Eng J 2020;381:122784. link1

[52] Jiang S, Reich S, Uch B, Hu P, Agarwal S, Greiner A. Exploration of the electrical conductivity of double-network silver nanowires/polyimide porous lowdensity compressible sponges. ACS Appl Mater Interfaces 2017;9 (39):34286–93. link1

[53] Tang Q, Fang Lu, Guo W. Effects of bamboo fiber length and loading on mechanical, thermal and pulverization properties of phenolic foam composites. J Bioresour Bioprod 2019;4(1):51–9. link1

[54] Li J, Yu J, Wang Y, Zhu J, Hu Z. Intercalated montmorillonite reinforced polyimide separator prepared by solution blow spinning for lithium-ion batteries. Ind Eng Chem Res 2020;59(28):12879–88. link1

[55] Wang YY, Zhou ZH, Zhou CG, Sun WJ, Gao JF, Dai K, et al. Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl Mater Interfaces 2020;12(7):8704–12. link1

[56] Liu W, Luo Y, Xu C. A new organosilicon adhesive based on polysiloxane and polysilazane. High Perform Polym 2013;25(5):543–50. link1

[57] Barroso G, Döring M, Horcher A, Kienzle A, Motz G. Polysilazane-based coatings with anti-adherent properties for easy release of plastics and composites from metal molds. Adv Mater Interfaces 2020;7(10):1901952. link1

[58] Gardelle B, Duquesne S, Vu C, Bourbigot S. Thermal degradation and fire performance of polysilazane-based coatings. Thermochim Acta 2011;519(1– 2):28–37. link1

[59] Ricci PC, Gulleri G, Fumagalli F, Carbonaro CM, Corpino R. Optical characterization of polysilazane based silica thin films on silicon substrates. Appl Surf Sci 2013;265:470–4. link1

Related Research