Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 23, Issue 4 doi: 10.1016/j.eng.2021.09.010

Commercial Gel-Type Ion Exchange Resin Enables Large-Scale Production of Ultrasmall Nanoparticles for Highly Efficient Water Decontamination

a School of the Environment, Nanjing University, Nanjing 210023, China
b School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094, China
c Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
d College of Engineering and Applied Science, Nanjing University, Nanjing 210023, China

Received: 2021-05-16 Revised: 2021-08-26 Accepted: 2021-09-01 Available online: 2021-11-18

Next Previous

Abstract

Nanotechnology presents innovative solutions in advanced water treatment; however, its application is limited by the challenging large-scale production of ultrasmall (< 5 nm) nanoparticles (NPs) with extraordinary decontamination reactivity and the difficulty of handling such tiny NPs in engineering. To address these challenges, we propose a straightforward route for synthesizing ultrasmall NPs using the commercial gel-type anion exchange resin N201 as the host. N201 is a millimeter-scale poly(styrene-co-divinylbenzene) bead modified with quaternary ammonium groups. Nanoparticles of hydrated ferric oxide (HFO), hydrated manganese oxide (HMO), cadmium sulfide (CdS), and zero-valent iron (ZVI) were obtained through simple impregnation-precipitation in N201, and all of the NPs possessed an ultrasmall size of sub-5 nm. A pilot-scale production assay indicated that the synthetic system could be enlarged proportionally to prepare massive sub-5 nm HFO. Regarding the underlying mechanism, each N201 bead contained a continuous water phase, allowing the rapid diffusion of the reactants (7 s for diffusion from the bead surface to the center), resulting in burst nucleation to produce ultrasmall NPs with a narrow size distribution. Moreover, the crosslinked polymer chains provided a confined space (< 5 nm diameter) to prevent the excessive growth of the formed NPs. Owing to the millimetric N201 host, the resultant nanocomposite can be applied in flow-through systems. The batch and column adsorption assays demonstrate the dramatically enhanced adsorption performance of the ultrasmall HFO toward As(III/V) than the ∼17 nm analogs. This study can advance the widespread use of nanotechnology in practical water treatment.

SupplementaryMaterials

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

References

[ 1 ] Powley HR, Dürr HH, Lima AT, Krom MD, Van Cappellen P. Direct discharges of domestic wastewater are a major source of phosphorus and nitrogen to the mediterranean sea. Environ Sci Technol 2016;50(16):8722‒30. link1

[ 2 ] Gao L, Gao B, Xu D, Peng W, Lu J. Multiple assessments of trace metals in sediments and their response to the water level fluctuation in the Three Gorges Reservoir, China. Sci Total Environ 2019;648:197‒205. link1

[ 3 ] Tang W, Kovalsky P, He D, Waite TD. Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization. Water Res 2015;84:342‒9. link1

[ 4 ] Zhang Q, Bolisetty S, Cao Y, Handschin S, Adamcik J, Peng Q, et al. Selective and efficient removal of fluoride from water: in situ engineered amyloid Fibril/ZrO2 hybrid membranes. Angew Chem Int Ed Engl 2019;58(18):6012‒6. link1

[ 5 ] Song P, Yang Z, Zeng G, Yang X, Xu H, Wang L, et al. Electrocoagulation treatment of arsenic in wastewaters: a comprehensive review. Chem Eng J 2017;317:707‒25. link1

[ 6 ] Ling C, Ren Z, Wei M, Tong F, Cheng Y, Zhang X, et al. Highly selective removal of Ni(II) from plating rinsing wastewaters containing [Ni-xNH3-yP2O7]n complexes using N-chelating resins. J Hazard Mater 2020;398:122960. link1

[ 7 ] Nyström F, Nordqvist K, Herrmann I, Hedström A, Viklander M. Removal of metals and hydrocarbons from stormwater using coagulation and flocculation. Water Res 2020;182:115919. link1

[ 8 ] Wang Y, Pan T, Yu Y, Wu Y, Pan Y, Yang X. A novel peroxymonosulfate (PMS)-enhanced iron coagulation process for simultaneous removal of trace organic pollutants in water. Water Res 2020;185:116136. link1

[ 9 ] Wang T, Zhang L, Li C, Yang W, Song T, Tang C, et al. Synthesis of core-shell magnetic Fe3O4@poly(m-phenylenediamine) particles for chromium reduction and adsorption. Environ Sci Technol 2015;49(9):5654‒62. link1

[10] Ji C, Wu D, Lu J, Shan C, Ren Y, Li T, et al. Temperature regulated adsorption and desorption of heavy metals to A-MIL-121: mechanisms and the role of exchangeable protons. Water Res 2021;189:116599. link1

[11] Zhao DL, Japip S, Zhang Y, Weber M, Maletzko C, Chung TS. Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: a review. Water Res 2020;173:115557. link1

[12] Nie G, Qiu S, Wang X, Du Y, Zhang Q, Zhang Y, et al. A millimeter-sized negatively charged polymer embedded with molybdenum disulfide nanosheets for efficient removal of Pb(II) from aqueous solution. Chin Chem Lett 2021;32(7):2342‒6. link1

[13] Zhang J, Gu D, Yang Y, Zhang H, Chen H, Dai D, et al. Influence of particle size on laser absorption and scanning track formation mechanisms of pure tungsten powder during selective laser melting. Engineering 2019;5(4):736‒45. link1

[14] Fang R, Lu C, Zhong Y, Xiao Z, Liang C, Huang H, et al. Puffed rice carbon with coupled sulfur and metal iron for high-efficiency mercury removal in aqueous solution. Environ Sci Technol 2020;54(4):2539‒47. link1

[15] Wang T, Jiang Z, An T, Li G, Zhao H, Wong PK. Enhanced visible-light-driven photocatalytic bacterial inactivation by ultrathin carbon-coated magnetic cobalt ferrite nanoparticles. Environ Sci Technol 2018;52(8):4774‒84. link1

[16] Guo J, Wan Y, Zhu Y, Zhao M, Tang Z. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Res 2021;14(7):2037‒52.

[17] Qu Z, Wu Y, Zhu S, Yu Y, Huo M, Zhang L, et al. Green synthesis of magnetic adsorbent using groundwater treatment sludge for tetracycline adsorption. Engineering 2019;5(5):880‒7. link1

[18] Zhang G, Liu F, Liu H, Qu J, Liu R. Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: an X-ray absorption spectroscopy investigation. Environ Sci Technol 2014;48(17):10316‒22. link1

[19] Mendez JC, Hiemstra T. High and low affinity sites of ferrihydrite for metal ion adsorption: data and modeling of the alkaline-earth ions Be, Mg, Ca, Sr, Ba, and Ra. Geochim Cosmochim Acta 2020;286:289‒305. link1

[20] Razanajatovo MR, Gao W, Song Y, Zhao X, Sun Q, Zhang Q. Selective adsorption of phosphate in water using lanthanum-based nanomaterials: a critical review. Chin Chem Lett. 2021;32(9):2637‒47. link1

[21] Chekli L, Phuntsho S, Roy M, Lombi E, Donner E, Shon HK. Assessing the aggregation behaviour of iron oxide nanoparticles under relevant environmental conditions using a multi-method approach. Water Res 2013;47(13):4585‒99. link1

[22] Lofrano G, Carotenuto M, Libralato G, Domingos RF, Markus A, Dini L, et al. Polymer functionalized nanocomposites for metals removal from water and wastewater: an overview. Water Res 2016;92:22‒37. link1

[23] Qu X, Alvarez PJJ, Li Q. Applications of nanotechnology in water and wastewater treatment. Water Res 2013;47(12):3931‒46. link1

[24] Ali Zadeh Sahraei O, Larachi F, Abatzoglou N, Iliuta MC. Hydrogen production by glycerol steam reforming catalyzed by Ni-promoted Fe/Mg-bearing metallurgical wastes. Appl Catal B 2017;219:183‒93. link1

[25] Yang F, Zhang S, Sun Y, Cheng K, Li J, Tsang DCW. Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal. Bioresour Technol 2018;265:490‒7. link1

[26] Jin H, Zhou H, Ji P, Zhang C, Luo J, Zeng W, et al. ZIF-8/LiFePO4 derived Fe‒N‒P Co-doped carbon nanotube encapsulated Fe2P nanoparticles for efficient oxygen reduction and Zn-air batteries. Nano Res 2020;13(3):818‒23. link1

[27] Zhang Z, Tan Y, Zeng T, Yu L, Chen R, Cheng N, et al. Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn-air batteries. Nano Res 2021;7:2353‒62. link1

[28] Jiang Y, Hua M, Wu B, Ma H, Pan B, Zhang Q. Enhanced removal of arsenic from a highly laden industrial effluent using a combined coprecipitation/nano-adsorption process. Environ Sci Pollut Res Int 2014;21(10):6729‒35. link1

[29] Hua M, Xiao LL, Pan BC, Zhang QX. Validation of polymer-based nano-iron oxide in further phosphorus removal from bioeffluent: laboratory and scaledup study. Front Environ Sci Eng 2013;7(3):435‒41. link1

[30] Luo Z, Castleman AWJr, Khanna SN. Reactivity of metal clusters. Chem Rev 2016;116(23):14456‒92. link1

[31] Liu JX, Wang P, Xu W, Hensen EJM. Particle size and crystal phase effects in Fischer-Tropsch catalysts. Engineering 2017;3(4):467‒76. link1

[32] Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, et al. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 2006;314(5801):964‒7. link1

[33] Zhang X, Cheng C, Qian J, Lu Z, Pan S, Pan B. Highly efficient water decontamination by using sub-10 nm FeOOH confined within millimeter-sized mesoporous polystyrene beads. Environ Sci Technol 2017;51(16):9210‒8. link1

[34] Qi Y, He CT, Lin J, Lin S, Liu J, Huang J, et al. Mild metal-organic-gel route for synthesis of stable sub-5-nm metal-organic framework nanocrystals. Nano Res 2017;10(11):3621‒8. link1

[35] Zhang D, Wang Y, Deng J, Wang X, Guo G. Microfluidics revealing formation mechanism of intermetallic nanocrystals. Nano Energy 2020;70:104565. link1

[36] Zhang N, Yu SH, Abruña HD. Regulating lithium nucleation and growth by zinc modified current collectors. Nano Res 2020;13(1):45‒51. link1

[37] Su X, Chang J, Wu S, Tang B, Zhang S. Synthesis of highly uniform Cu2O spheres by a two-step approach and their assembly to form photonic crystals with a brilliant color. Nanoscale 2016;8(11):6155‒61. link1

[38] Baronov A, Bufkin K, Shaw DW, Johnson BL, Patrick DL. A simple model of burst nucleation. Phys Chem Chem Phys 2015;17(32):20846‒52. link1

[39] Xia Y, Xiong Y, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed Engl 2009;48(1):60‒103. link1

[40] Jiang X, Shao Y, Sheng L, Li P, He G. Membrane crystallization for process intensification and control: a review. Engineering 2021;7(1):50‒62. link1

[41] Jin R, Zeng C, Zhou M, Chen Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev 2016;116(18):10346‒413. link1

[42] Fernández-Lodeiro C, Fernandez-Lodeiro J, Carbo-Argibay E, Lodeiro C, Perez-Juste J, Pastoriza-Santos I. The versatility of Fe(II) in the synthesis of uniform citrate-stabilized plasmonic nanoparticles with tunable size at room temperature. Nano Res 2020;13(9):2351‒5. link1

[43] Wu Z, Yang S, Wu W. Shape control of inorganic nanoparticles from solution. Nanoscale 2016;8(3):1237‒59. link1

[44] Saldanha PL, Lesnyak V, Manna L. Large scale syntheses of colloidal nanomaterials. Nano Today 2017;12:46‒63. link1

[45] Zhang Y, Kubů M, Mazur M, Čejka J. Synthesis of Pt-MWW with controllable nanoparticle size. Catal Today 2019;324:135‒43. link1

[46] Gerber IC, Serp P. A theory/experience description of support effects in carbon-supported catalysts. Chem Rev 2020;120(2):1250‒349. link1

[47] Zhang QX, Zhang ZP, Li AM, Pan BC, Zhang XL. Advance in ion exchange and adsorption resins in China. Acta Polym Sin 2018;(7):814‒28. Chinese.

[48] Topp NE, Pepper KW. Properties of ion-exchange resins in relation to their structure. Part I. Titration curves. J Chem Soc 1949;3299‒303. link1

[49] Corain B, Jerabek K, Centomo P, Canton P. Generation of size-controlled Pd0 nanoclusters inside nanoporous domains of gel-type resins: diverse and convergent evidence that supports a strategy of template-controlled synthesis. Angew Chem Int Ed Engl 2004;43(8):959‒62. link1

[50] Zhang X, Wu M, Dong H, Li H, Pan B. Simultaneous oxidation and sequestration of As(III) from water by using redox polymer-based Fe(III) oxide nanocomposite. Environ Sci Technol 2017;51(11):6326‒34. link1

[51] Zhang Y, She X, Gao X, Shan C, Pan B. Unexpected favorable role of Ca2+ in phosphate removal by using nanosized ferric oxides confined in porous polystyrene beads. Environ Sci Technol 2019;53(1):365‒72. link1

[52] Pan B, Xu J, Wu B, Li Z, Liu X. Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles. Environ Sci Technol 2013;47(16):9347‒54. link1

[53] Zhu L, Liu Y, Chen J. Synthesis of n-methylimidazolium functionalized strongly basic anion exchange resins for adsorption of Cr(VI). Ind Eng Chem Res 2009;48(7):3261‒7. link1

[54] Sherrington DC. Preparation, structure and morphology of polymer supports. Chem Commun 1998;21:2275‒86. link1

[55] Du Y, Fang P, Chen J, Hou X. Synthesis of reusable macroporous St/BMA copolymer resin and its absorbency to organic solvent and oil. Polym Adv Technol 2016;27(3):393‒403. link1

[56] Sun S, Gebauer D, Cölfen H. Alignment of amorphous iron oxide clusters: a non-classical mechanism for magnetite formation. Angew Chem Int Ed Engl 2017;56(14):4042‒6. link1

[57] Yao ZF, Wang ZY, Wu HT, Lu Y, Li QY, Zou L, et al. Ordered solid-state microstructures of conjugated polymers arising from solution-state aggregation. Angew Chem Int Ed Engl 2020;59(40):17467‒71. link1

[58] Zheng SJ, Li ZQ, Liu ZS. The fast homogeneous diffusion of hydrogel under different stimuli. Int J Mech Sci 2018;137:263‒70. link1

[59] Pan S, Zhang X, Qian J, Lu Z, Hua M, Cheng C, et al. A new strategy to address the challenges of nanoparticles in practical water treatment: mesoporous nanocomposite beads via flash freezing. Nanoscale 2017;9(48):19154‒61. link1

[60] Chernyshova IV, Ponnurangam S, Somasundaran P. Effect of nanosize on catalytic properties of ferric (hydr)oxides in water: Mechanistic insights. J Catal 2011;282(1):25‒34. link1

[61] Shi QT, Sterbinsky GE, Zhang SJ, Christodoulatos C, Korfiatis GP, Meng XG. Formation of Fe(III)‒As(V) complexes: effect on the solubility of ferric hydroxide precipitates and molecular structural identification. Environ Sci Nano 2020;7(5):1388‒98. link1

[62] Wei Y, Wei S, Liu C, Chen T, Tang Y, Ma J, et al. Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics. Water Res 2019;167:115107. link1

[63] Li H, Shan C, Zhang Y, Cai J, Zhang W, Pan B. Arsenate adsorption by hydrous ferric oxide nanoparticles embedded in cross-linked anion exchanger: effect of the host pore structure. ACS Appl Mater Interfaces 2016;8(5):3012‒20. link1

[64] Fang Z, Li Z, Zhang X, Pan S, Wu M, Pan B. Enhanced arsenite removal from silicate-containing water by using redox polymer-based Fe(III) oxides nanocomposite. Water Res 2021;189:116673. link1

[65] Uddin MJ, Jeong YK. Review: Efficiently performing periodic elements with modern adsorption technologies for arsenic removal. Environ Sci Pollut Res Int 2020;27(32):39888‒912. link1

[66] Zhang X, Zhang L, Li Z, Jiang Z, Zheng Q, Lin B, et al. Rational design of antifouling polymeric nanocomposite for sustainable fluoride removal from NOM-rich Water. Environ Sci Technol 2017;51(22):13363‒71. link1

Related Research