Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 25, Issue 6 doi: 10.1016/j.eng.2021.09.020

Monovalent Cation Exchange Membranes with Janus Charged Structure for Ion Separation

a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
b School of Environments, Harbin Institute of Technology, Harbin 150009, China
c School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China

Received: 2021-04-23 Revised: 2021-07-16 Accepted: 2021-09-01 Available online: 2022-01-25

Next Previous

Abstract

Monovalent cation exchange membranes (M-CEMs) have been extensively applied in environmental remediation and energy harvesting such as the extraction of Na+ or Li+ from brine and seawater. However, owing to the limitations of membrane structures and materials, M-CEMs have a low perm-selectivity issue. Herein, we proposed a facile approach to construct a novel M-CEM with a Janus-charged structure, consisting of a positively-charged trimesic acid/polyethylenimine surface thin layer and a negatively charged commercial cation exchange membrane (CEM). Selectrodialysis results indicated that the Janus-charged M-CEMs could effectively suppress the migration of anions, which often occurred in porous CEMs, thereby enabling the novel Janus-charged M-CEMs to possess high perm-selectivity and high total cation fluxes. Compared with state-of-the-art M-CEMs, the Janus-charged M-CEM exhibited the highest perm-selectivity of 145.77 for Na+/Mg2+ and a Na+ flux of 14.3 × 10−8 mol·cm−2·s−1 beyond the contemporary “upper bound” plot as well as the excellent perm-selectivity of 14.11 for Li+/Mg2+, indicating its great potentials in ion separation. This study can provide novel insights into the design of Janus-charged M-CEMs for ion separation in diverse environmental and energy applications.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

References

[ 1 ] Wang B, Sun X, Xie Xu, Wang J, Li L, Jiao K. Experimental investigation of a novel cathode matrix flow field in proton exchange membrane fuel cell. ES Energy Environ 2021;12:95‒107. link1

[ 2 ] Kan A, Yuan Y, Zhu W, Cao D. Aging Model by permeation of moist air on service life of vacuum insulation panels (VIPs) with fibrous glass core. ES Energy Environ 2020;9:74‒81. link1

[ 3 ] Gao C, Deng W, Pan F, Feng X, Li Y. Superhydrophobic electrospun PVDF membranes with silanization and fluorosilanization co-functionalized CNTs for improved direct contact membrane distillation. Engineered Sci 2020;9:35‒43. link1

[ 4 ] Al-Amshawee S, Yunus MYBM, Azoddein AAM, Hassell DG, Dakhil IH, Hasan HA. Electrodialysis desalination for water and wastewater: a review. Chem Eng J 2020;380:122231. link1

[ 5 ] Campione A, Gurreri L, Ciofalo M, Micale G, Tamburini A, Cipollina A. Electrodialysis for water desalination: a critical assessment of recent developments on process fundamentals, models and applications. Desalination 2018;434:121‒60. link1

[ 6 ] Mei Y, Tang CY. Recent developments and future perspectives of reverse electrodialysis technology: a review. Desalination 2018;425:156‒74. link1

[ 7 ] Jang J, Kang Y, Han JH, Jang K, Kim CM, Kim IS. Developments and future prospects of reverse electrodialysis for salinity gradient power generation: influence of ion exchange membranes and electrodes. Desalination 2020;491:114540. link1

[ 8 ] Hu H, Ding FC, Ding H, Liu J, Xiao M, Meng Y, et al. Sulfonated poly(fluorenyl ether ketone)/sulfonated alpha-zirconium phosphate nanocomposite membranes for proton exchange membrane fuel cells. Adv Compos Hybrid Mater 2020;3(4):498‒507. link1

[ 9 ] He Z, Wang G, Wang C, Guo L, Wei R, Song G, et al. Overview of anion exchange membranes based on ring opening metathesis polymerization (ROMP). Polym Rev 2021;61(4):689‒713. link1

[10] Chen Y, Zhang S, Jin J, Liu C, Liu Q, Jian X. Poly(phthalazinone ether ketone) amphoteric ion exchange membranes with low water transport and vanadium permeability for vanadium redox flow battery application. ACS Appl Energ Mater 2019;2(11):8207‒18. link1

[11] Li XF, Zhang HM, Mai ZS, Zhang H, Vankelecom I. Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ Sci 2011;4(4):1147‒60. link1

[12] Liu L, Wang C, He Z, Liu H, Hu Q, Naik N, et al. Bi-functional side chain architecture tuned amphoteric ion exchange membranes for highperformance vanadium redox flow batteries. J Membr Sci 2021;624:119118. link1

[13] Liu L, Wang C, He Z, Das R, Dong B, Xie X, et al. An overview of amphoteric ion exchange membranes for vanadium redox flow batteries. J Mater Sci Technol 2021;69:212‒27. link1

[14] Balaji J, Sethuraman MG, Roh SH, Jung HY. Recent developments in sol‒gel based polymer electrolyte membranes for vanadium redox flow batteries—a review. Polym Test 2020;89:106567. link1

[15] Luo T, Abdu S, Wessling M. Selectivity of ion exchange membranes: a review. J Membr Sci 2018;555:429‒54. link1

[16] Tang C, Bruening ML. Ion separations with membranes. J Polym Sci 2020;58(20):2831‒56. link1

[17] Sata T, Sata T, Yang W. Studies on cation-exchange membranes having permselectivity between cations in electrodialysis. J Membr Sci 2002;206(1‒2):31‒60.

[18] Zhang Y, Wang L, Sun W, Hu Y, Tang H. Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: a comprehensive review. J Ind Eng Chem 2020;81:7‒23. link1

[19] Wang W, Liu R, Tan M, Sun H, Niu QJ, Xu T, et al. Evaluation of the ideal selectivity and the performance of selectrodialysis by using TFC ion exchange membranes. J Membr Sci 2019;582:236‒45. link1

[20] Zhang Y, Guo J, Han G, Bai Y, Ge Q, Ma J, et al. Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Sci Adv 2021;7(13): eabe8706. link1

[21] Zhang Y, Cheng X, Jiang Xu, Urban JJ, Lau CH, Liu S, et al. Robust natural nanocomposites realizing unprecedented ultrafast precise molecular separations. Mater Today 2020;36:40‒7. link1

[22] Yang X, Yuan L, Zhao Y, Yan L, Bai Y, Ma J, et al. Mussel-inspired structure evolution customizing membrane interface hydrophilization. J Membr Sci 2020;612:118471. link1

[23] Yang F, Sadam H, Zhang Y, Xia J, Yang X, Long J, et al. A de novo sacrificial-MOF strategy to construct enhanced-flux nanofiltration membranes for efficient dye removal. Chem Eng Sci 2020;225:115845. link1

[24] He SS, Jiang X, Li SW, Ran F, Long J, Shao L. Intermediate thermal manipulation of polymers of intrinsic microporous (PIMs) membranes for gas separations. AIChE J 2020;66(10):e16543. link1

[25] Guo J, Bao H, Zhang Y, Shen X, Kim JK, Ma J, et al. Unravelling intercalationregulated nanoconfinement for durably ultrafast sieving graphene oxide membranes. J Membr Sci 2021;619:118791. link1

[26] Sun B, Sun H, Li Y, Cui U, Cheng C. A systematic synthetic study of polyelectrolyte nanocapsules via crystallized miniemulsion nanodroplets. Engineered Sci 2019;5:39‒45. link1

[27] Liu L, Bernazzani P, Chu W, Luo SZ, Wang B, Guo Z. Polyelectrolyte assisted preparation of nanocatalysts for CO2 methanation. Engineered Sci 2018;2:74‒81. link1

[28] Jayanthi S. Studies on ionic liquid incorporated polymer blend electrolytes for energy storage applications. Adv Compos Hybrid Mater 2019;2(2): 351‒60. link1

[29] Wang Z, He S, Nguyen V, Riley KE. Ionic liquids as “green solvent and/or electrolyte” for energy interface. Engineered Sci 2020;11:3‒18. link1

[30] Angaiah S, Murugadoss V, Arunachalam S, Panneerselvam P, Krishnan S. Influence of various ionic liquids embedded electrospun polymer membrane electrolytes on the photovoltaic performance of DSSC. Engineered Sci 2018;4:44‒51. link1

[31] Rijnaarts T, Reurink DM, Radmanesh F, de Vos WM, Nijmeijer K. Layer-bylayer coatings on ion exchange membranes: effect of multilayer charge and hydration on monovalent ion selectivities. J Membr Sci 2019;570:513‒21. link1

[32] Zhang Y, Liu R, Lang Q, Tan M, Zhang Y. Composite anion exchange membrane made by layer-by-layer method for selective ion separation and water migration control. Sep Purif Technol 2018;192:278‒86. link1

[33] Zhao Y, Zhu J, Ding J, Van der Bruggen B, Shen J, Gao C. Electric-pulse layer-bylayer assembled of anion exchange membrane with enhanced monovalent selectivity. J Membr Sci 2018;548:81‒90. link1

[34] Zhao Y, Tang K, Liu H, Van der Bruggen B, Sotto Díaz A, Shen J, et al. An anion exchange membrane modified by alternate electro-deposition layers with enhanced monovalent selectivity. J Membr Sci 2016;520:262‒71. link1

[35] Zhao Y, Liu Y, Wang C, Ortega E, Wang X, Xie YF, et al. Electric field-based ionic control of selective separation layers. J Mater Chem A 2020;8(8):4244‒51. link1

[36] Zhao Y, Gao C, Van der Bruggen B. Technology-driven layer-by-layer assembly of a membrane for selective separation of monovalent anions and antifouling. Nanoscale 2019;11(5):2264‒74. link1

[37] Zhang Z, Sui X, Li P, Xie G, Kong XY, Xiao K, et al. Ultrathin and ion-selective Janus membranes for high-performance osmotic energy conversion. J Am Chem Soc 2017;139(26):8905‒14. link1

[38] Gohil GS, Binsu VV, Shahi VK. Preparation and characterization of mono-valent ion selective polypyrrole composite ion-exchange membranes. J Membr Sci 2006;280(1‒2):210‒8. link1

[39] Ferreira CA, Casanovas J, Rodrigues MAS, Müller F, Armelin E, Alemán C. Transport of metallic ions through polyaniline-containing composite membranes. J Chem Eng Data 2010;55(11):4801‒7. link1

[40] Jiang W, Lin L, Xu X, Wang H, Xu P. Physicochemical and electrochemical characterization of cation-exchange membranes modified with polyethyleneimine for elucidating enhanced monovalent permselectivity of electrodialysis. J Membr Sci 2019;572:545‒56. link1

[41] Li J, Yuan S, Wang J, Zhu J, Shen J, Van der Bruggen B. Mussel-inspired modification of ion exchange membrane for monovalent separation. J Membr Sci 2018;553:139‒50. link1

[42] Gu K, Wang S, Li Y, Zhao X, Zhou Y, Gao C. A facile preparation of positively charged composite nanofiltration membrane with high selectivity and permeability. J Membr Sci 2019;581:214‒23. link1

[43] Zhang Y, Desmidt E, Van Looveren A, Pinoy L, Meesschaert B, Van der Bruggen B. Phosphate separation and recovery from wastewater by novel electrodialysis. Environ Sci Technol 2013;47(11):5888‒95. link1

[44] Tran ATK, Zhang Y, De Corte D, Hannes JB, Ye W, Mondal P, et al. P-recovery as calcium phosphate from wastewater using an integrated selectrodialysis/ crystallization process. J Clean Prod 2014;77:140‒51. link1

[45] Tran ATK, Zhang Y, Lin J, Mondal P, Ye W, Meesschaert B, et al. Phosphate preconcentration from municipal wastewater by selectrodialysis: effect of competing components. Sep Purif Technol 2015;141:38‒47. link1

[46] Ghyselbrecht K, Sansen B, Monballiu A, Ye ZL, Pinoy L, Meesschaert B. Cationic selectrodialysis for magnesium recovery from seawater on lab and pilot scale. Sep Purif Technol 2019;221:12‒22. link1

[47] Reig M, Valderrama C, Gibert O, Cortina JL. Selectrodialysis and bipolar membrane electrodialysis combination for industrial process brines treatment: monovalent-divalent ions separation and acid and base production. Desalination 2016;399:88‒95. link1

[48] Chen B, Jiang C, Wang Y, Fu R, Liu Z, Xu T. Selectrodialysis with bipolar membrane for the reclamation of concentrated brine from RO plant. Desalination 2018;442:8‒15. link1

[49] Tang CY, Kwon YN, Leckie JO. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry. Desalination 2009;242(1‒3):149‒67.

[50] Won SW, Kwak IS, Yun YS. The role of biomass in polyethylenimine-coated chitosan/bacterial biomass composite biosorbent fiber for removal of Ru from acetic acid waste solution. Bioresour Technol 2014;160:93‒7. link1

[51] Ge L, Wu B, Li Q, Wang Y, Yu D, Wu L, et al. Electrodialysis with nanofiltration membrane (EDNF) for high-efficiency cations fractionation. J Membr Sci 2016;498:192‒200. link1

[52] Hou L, Wu B, Yu D, Wang S, Shehzad MA, Fu R, et al. Asymmetric porous monovalent cation perm-selective membranes with an ultrathin polyamide selective layer for cations separation. J Membr Sci 2018;557:49‒57. link1

[53] Hou L, Pan J, Yu D, Wu B, Mondal AN, Li Q, et al. Nanofibrous composite membranes (NFCMs) for mono/divalent cations separation. J Membr Sci 2017;528:243‒50. link1

[54] Li J, Zhao ZJ, Yuan SS, Zhu J, Bruggen BV. High-performance thin-filmnanocomposite cation exchange membranes containing hydrophobic zeolitic imidazolate framework for monovalent selectivity. Appl Sci 2018;8(5):759. link1

[55] He Y, Ge L, Ge ZJ, Zhao Z, Sheng F, Liu X, et al. Monovalent cations permselective membranes with zwitterionic side chains. J Membr Sci 2018;563:320‒5. link1

[56] Shehzad MA, Wang Y, Yasmin A, Ge X, He Y, Liang X, et al. Biomimetic nanocones that enable high ion permselectivity. Angew Chem Int Ed 2019;58(36):12646‒54. link1

[57] Irfan M, Wang Y, Xu T. Novel electrodialysis membranes with hydrophobic alkyl spacers and zwitterion structure enable high monovalent/divalent cation selectivity. Chem Eng J 2020;383:123171. link1

[58] Pang X, Tao Y, Xu Y, Pan J, Shen J, Gao C. Enhanced monovalent selectivity of cation exchange membranes via adjustable charge density on functional layers. J Membr Sci 2020;595:117544. link1

[59] Xu T, Sheng F, Wu B, Shehzad MA, Yasmin A, Wang X, et al. Ti-exchanged UiO-66‒NH2-containing polyamide membranes with remarkable cation permselectivity. J Membr Sci 2020;615:118608. link1

[60] Xu T, Shehzad MA, Yu D, Li Q, Wu B, Ren X, et al. Highly cation permselective metal-organic framework membranes with leaf-like morphology. ChemSusChem 2019;12(12):2593‒7. link1

[61] Xu T, Shehzad MA, Wang X, Wu B, Ge L, Xu T. Engineering leaf-like UiO-66- SO3H membranes for selective transport of cations. Nano-Micro Lett 2020;12(1):51. link1

Related Research