Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 14, Issue 7 doi: 10.1016/j.eng.2021.12.013

Technical Perspective of Carbon Capture, Utilization, and Storage

State Key Laboratory of Clean Energy Utilization, State Environmental Protection Engineering Center for Coal-Fired Air Pollution Control, Zhejiang University, Hangzhou 310027, China

Received: 2021-07-12 00:00:00 Revised: 2021-11-09 00:00:00 Accepted: 2021-12-27 00:00:00 Available online: 2022-02-16

Next Previous

Abstract

Carbon dioxide (CO2) is the primary greenhouse gas contributing to anthropogenic climate change which is associated with human activities. The majority of CO2 emissions are results of the burning of fossil fuels for energy, as well as industrial processes such as steel and cement production. Carbon capture, utilization, and storage (CCUS) is a sustainability technology promising in terms of reducing CO2 emissions that would otherwise contribute to climate change. From this perspective, the discussion on carbon capture focuses on chemical absorption technology, primarily due to its commercialization potential. The CO2 absorptive capacity and absorption rate of various chemical solvents have been summarized. The carbon utilization focuses on electrochemical conversion routes converting CO2 into potentially valuable chemicals have received particular attention. The Faradaic conversion efficiencies for various CO2 reduction products are used to describe efficiency improvements. For carbon storage, successful deployment relies on a better understanding of fluid mechanics, geomechanics, and reactive transport, which are discussed in details.

Figures

Fig. 1

Fig. 2

Fig. 3

References

[ 1 ] Yoro KO, Daramola MO. Chapter 1—CO2 emission sources, greenhouse gases, and the global warming effect. In: Rahimpour MR, Farsi M, Makarem MA, editors. Advances in carbon capture. Cambridge: Woodhead Publishing; 2020. p. 3–28.

[ 2 ] Zhang Z, Wang T, Blunt MJ, Anthony EJ, Park AH, Hughes RW, et al. Advances in carbon capture, utilization and storage. Appl Energy 2020;278:115627. link1

[ 3 ] Intergovernmental Panel on Climate Change. Global warming of 1.5 C: an IPCC special report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. Report. Geneva: Intergovernmental Panel on Climate Change; 2018.

[ 4 ] International Energy Agency. Global energy & CO2 status report 2019. Report. Paris: International Energy Agency; 2020.

[ 5 ] Fan JL, Shen S, Xu M, Yang Y, Yang L, Zhang X. Cost-benefit comparison of carbon capture, utilization, and storage retrofitted to different thermal power plants in China based on real options approach. Adv Clim Chang Res 2020;11 (4):415–28. link1

[ 6 ] Wang T, Liu F, Ge K, Fang M. Reaction kinetics of carbon dioxide absorption in aqueous solutions of piperazine, N-(2-aminoethyl) ethanolamine and their blends. Chem Eng J 2017;314:123–31. link1

[ 7 ] Yu W, Wang T, Park AH, Fang M. Review of liquid nano-absorbents for enhanced CO2 capture. Nanoscale 2019;11(37):17137–56. link1

[ 8 ] Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, et al. Carbon capture and storage update. Energy Environ Sci 2014;7 (1):130–89. link1

[ 9 ] Stéphenne K. Start-up of world’s first commercial post-combustion coal fired CCS project: contribution of Shell Cansolv to Saskpower Boundary Dam ICCS project. Energy Procedia 2014;63:6106–10. link1

[10] Mantripragada HC, Zhai H, Rubin ES. Boundary Dam or Petra Nova—which is a better model for CCS energy supply? Int J Greenh Gas Control 2019;82:59–68. link1

[11] Global Carbon Capture and Storage Institute. Carbon capture and storage: global status report 2019. Report. Melbourne: Global Carbon Capture and Storage Institute; 2019.

[12] Wu X, Wang M, Liao P, Shen J, Li Y. Solvent-based post-combustion CO2 capture for power plants: a critical review and perspective on dynamic modelling, system identification, process control and flexible operation. Appl Energy 2020;257:113941. link1

[13] Aronu UE, Hoff KA, Svendsen HF. CO2 capture solvent selection by combined absorption–desorption analysis. Chem Eng Res Des 2011;89(8):1197–203. link1

[14] Dallos A, Altsach T, Kotsis L. Enthalpies of absorption and solubility of carbon dioxide in aqueous polyamine solutions. J Therm Anal Calorim 2001;65 (2):419–23. link1

[15] Singh P, Niederer JPM, Versteeg GF. Structure and activity relationships for amine-based CO2 absorbents—II. Chem Eng Res Des 2009;87(2):135–44. link1

[16] Zhu D, Fang M, Lv Z, Wang Z, Luo Z. Selection of blended solvents for CO2 absorption from coal-fired flue gas. Part 1: monoethanolamine (MEA)-based solvents. Energy Fuels 2012;26(1):147–53. link1

[17] Kim S, Shi H, Lee JY. CO2 absorption mechanism in amine solvents and enhancement of CO2 capture capability in blended amine solvent. Int J Greenh Gas Control 2016;45:181–8. link1

[18] Liu F, Fang M, Yi N, Wang T. Research on alkanolamine-based physical– chemical solutions as biphasic solvents for CO2 capture. Energy Fuels 2019;33 (11):11389–98. link1

[19] Zhou X, Jing G, Lv B, Liu F, Zhou Z. Low-viscosity and efficient regeneration of carbon dioxide capture using a biphasic solvent regulated by 2-amino-2- methyl-1-propanol. Appl Energy 2019;235:379–90. link1

[20] Lv B, Zhou X, Zhou Z, Jing G. Kinetics and thermodynamics of CO2 absorption into a novel DETA–AMP–PMDETA biphasic solvent. ACS Sustain Chem Eng 2019;7(15):13400–10. link1

[21] Yuan Y, Rochelle GT. CO2 absorption rate in semi-aqueous monoethanolamine. Chem Eng Sci 2018;182:56–66. link1

[22] Guo H, Li H, Shen S. CO2 capture by water-lean amino acid salts: absorption performance and mechanism. Energy Fuels 2018;32(6):6943–54. link1

[23] Wanderley RR, Knuutila HK. Mapping diluents for water-lean solvents: a parametric study. Ind Eng Chem Res 2020;59(25):11656–80. link1

[24] Lu R, Li K, Chen J, Yu H, Tade M. CO2 capture using piperazine-promoted, aqueous ammonia solution: rate-based modelling and process simulation. Int J Greenh Gas Control 2017;65:65–75. link1

[25] Liu J, Wang S, Svendsen HF, Idrees MU, Kim I, Chen C. Heat of absorption of CO2 in aqueous ammonia, piperazine solutions and their mixtures. Int J Greenh Gas Control 2012;9:148–59. link1

[26] Qi G, Wang S, Lu W, Yu J, Chen C. Vapor–liquid equilibrium of CO2 in NH3–CO2– SO2–H2O system. Fluid Phase Equilib 2015;386:47–55. link1

[27] Kurz F, Rumpf B, Maurer G. Vapor–liquid–solid equilibria in the system NH3– CO2–H2O from around 310 to 470 K: new experimental data and modeling. Fluid Phase Equilib 1995;104:261–75. link1

[28] Lee A, Mumford KA, Wu Y, Nicholas N, Stevens GW. Understanding the vapour–liquid equilibrium of CO2 in mixed solutions of potassium carbonate and potassium glycinate. Int J Greenh Gas Control 2016;47:303–9. link1

[29] Kang D, Lee MG, Yoo Y, Park J. Absorption characteristics of potassium carbonate-based solutions with rate promoters and corrosion inhibitors. J Mater Cycles Waste Manag 2018;20(3):1562–73. link1

[30] Wang T, Ge K, Chen K, Hou C, Fang M. Theoretical studies on CO2 capture behavior of quaternary ammonium-based polymeric ionic liquids. Phys Chem Chem Phys 2016;18(18):13084–91. link1

[31] Wang C, Luo X, Zhu X, Cui G, Jiang D, Deng D, et al. The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids. RSC Adv 2013;3 (36):15518. link1

[32] Song HJ, Park S, Kim H, Gaur A, Park JW, Lee SJ. Carbon dioxide absorption characteristics of aqueous amino acid salt solutions. Int J Greenh Gas Control 2012;11:64–72. link1

[33] Zarei A, Hafizi A, Rahimpour MR, Raeissi S. Carbon dioxide absorption into aqueous potassium salt solutions of glutamine amino acid. J Mol Liq 2020;301:111743. link1

[34] Ma’mun S. Amino-acid-salt-based carbon dioxide capture: precipitation behavior of potassium sarcosine solution. IOP Conf Ser: Mater Sci Eng 2020;811(1):012033. link1

[35] Knipe JM, Chavez KP, Hornbostel KM, Worthington MA, Nguyen DT, Ye C, et al. Evaluating the performance of micro-encapsulated CO2 sorbents during CO2 absorption and regeneration cycling. Environ Sci Technol 2019;53(5):2926–36. link1

[36] Vericella JJ, Baker SE, Stolaroff JK, Duoss EB, Hardin JO, Lewicki J, et al. Encapsulated liquid sorbents for carbon dioxide capture. Nat Commun 2015;6 (1):6124. link1

[37] Kaviani S, Kolahchyan S, Hickenbottom KL, Lopez AM, Nejati S. Enhanced solubility of carbon dioxide for encapsulated ionic liquids in polymeric materials. Chem Eng J 2018;354:753–7. link1

[38] Jiang Y, Zhang Z, Fan J, Yu J, Bi D, Li B, et al. Experimental study on comprehensive carbon capture performance of TETA-based nanofluids with surfactants. Int J Greenh Gas Control 2019;88:311–20. link1

[39] Du Y, Yuan Y, Rochelle GT. Capacity and absorption rate of tertiary and hindered amines blended with piperazine for CO2 capture. Chem Eng Sci 2016;155:397–404. link1

[40] Zhuang Q, Clements B, Dai J, Carrigan L. Ten years of research on phase separation absorbents for carbon capture: achievements and next steps. Int J Greenh Gas Control 2016;52:449–60. link1

[41] Sutherland BR. Pricing CO2 direct air capture. Joule 2019;3(7):1571–3. link1

[42] Hepburn C, Adlen E, Beddington J, Carter EA, Fuss S, Mac Dowell N, et al. The technological and economic prospects for CO2 utilization and removal. Nature 2019;575(7781):87–97. link1

[43] Chauvy R, De Weireld G. CO2 utilization technologies in Europe: a short review. Energy Technol 2020;8(12):2000627. link1

[44] Chauvy R, Meunier N, Thomas D, De Weireld G. Selecting emerging CO2 utilization products for short- to mid-term deployment. Appl Energy 2019;236:662–80. link1

[45] Gao D, Zhou H, Wang J, Miao S, Yang F, Wang G, et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc 2015;137(13):4288–91. link1

[46] Gu J, Hsu CS, Bai L, Chen HM, Hu X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019;364(6445):1091–4. link1

[47] Zhang X, Wang Y, Gu M, Wang M, Zhang Z, Pan W, et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat Energy 2020;5(9):684–92. link1

[48] Gao S, Lin Y, Jiao X, Sun Y, Luo Q, Zhang W, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016;529(7584):68–71. link1

[49] Zheng X, De Luna P, García de Arquer FP, Zhang B, Becknell N, Ross MB, et al. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 2017;1(4):794–805. link1

[50] Fan K, Jia Y, Ji Y, Kuang P, Zhu B, Liu X, et al. Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window. ACS Catal 2020;10(1):358–64. link1

[51] Le M, Ren M, Zhang Z, Sprunger PT, Kurtz RL, Flake JC. Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J Electrochem Soc 2011;158(5):E45–9. link1

[52] Safdar Hossain S, Rahman S, Ahmed S. Electrochemical reduction of carbon dioxide over CNT-supported nanoscale copper electrocatalysts. J Nanomater 2014;2014:1–10. link1

[53] Zhao K, Liu Y, Quan X, Chen S, Yu H. CO2 electroreduction at low overpotential on oxide-derived Cu/carbons fabricated from metal organic framework. ACS Appl Mater Interfaces 2017;9(6):5302–11. link1

[54] Zhao Q, Zhang C, Hu R, Du Z, Gu J, Cui Y, et al. Selective etching quaternary MAX Phase toward single atom copper immobilized MXene (Ti3C2Clx) for efficient CO2 electroreduction to methanol. ACS Nano 2021;15(3):4927–36. link1

[55] Weng Z, Jiang J, Wu Y, Wu Z, Guo X, Materna KL, et al. Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J Am Chem Soc 2016;138(26):8076–9. link1

[56] Wang Y, Chen Z, Han P, Du Y, Gu Z, Xu X, et al. Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal 2018;8(8):7113–9. link1

[57] Jeon HS, Timoshenko J, Scholten F, Sinev I, Herzog A, Haase FT, et al. Operando insight into the correlation between the structure and composition of CuZn nanoparticles and their selectivity for the electrochemical CO2 reduction. J Am Chem Soc 2019;141(50):19879–87. link1

[58] Hu Q, Han Z, Wang X, Li G, Wang Z, Huang X, et al. Facile synthesis of subnanometric copper clusters by double confinement enables selective reduction of carbon dioxide to methane. Angew Chem Int Ed Engl 2020;59(43):19054–9. link1

[59] Zhong M, Tran K, Min Y, Wang C, Wang Z, Dinh CT, et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020;581 (7807):178–83. link1

[60] Ren D, Deng Y, Handoko AD, Chen CS, Malkhandi S, Yeo BS. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal 2015;5(5):2814–21. link1

[61] Ma S, Sadakiyo M, Heima M, Luo R, Haasch RT, Gold JI, et al. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu–Pd catalysts with different mixing patterns. J Am Chem Soc 2017;139(1):47–50. link1

[62] Hoang TTH, Verma S, Ma S, Fister TT, Timoshenko J, Frenkel AI, et al. Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J Am Chem Soc 2018;140(17):5791–7. link1

[63] Ren D, Ang BSH, Yeo BS. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived Cu Zn catalysts. ACS Catal 2016;6(12):8239–47. link1

[64] Li YC, Wang Z, Yuan T, Nam DH, Luo M, Wicks J, et al. Binding site diversity promotes CO2 electroreduction to ethanol. J Am Chem Soc 2019;141 (21):8584–91. link1

[65] Wang X, Wang Z, García de Arquer FP, Dinh CT, Ozden A, Li YC, et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat Energy 2020;5(6):478–86. link1

[66] Nitopi S, Bertheussen E, Scott SB, Liu X, Engstfeld AK, Horch S, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev 2019;119(12):7610–72. link1

[67] Chen C, Zhu X, Wen X, Zhou Y, Zhou L, Li H, et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat Chem 2020;12 (8):717–24. link1

[68] Dinh CT, Burdyny T, Kibria MG, Seifitokaldani A, Gabardo CM, García de Arquer FP, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018;360(6390):783–7. link1

[69] De Luna P, Hahn C, Higgins D, Jaffer SA, Jaramillo TF, Sargent EH. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 2019;364(6438):eaav3506. Corrected in: Science 2020;367(6482):abb0992.

[70] Zhang Z, Pan SY, Li H, Cai J, Olabi AG, Anthony EJ, et al. Recent advances in carbon dioxide utilization. Renew Sustain Energy Rev 2020;125:109799. link1

[71] International Energy Agency. World Energy Outlook 2019: the gold standard of energy analysis. Report. Paris: International Energy Agency; 2019.

[72] Cuéllar-Franca RM, Azapagic A. Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J CO2 Util 2015;9:82–102. link1

[73] de Coninck H, Benson SM. Carbon dioxide capture and storage: issues and prospects. Annu Rev Environ Resour 2014;39(1):243–70. link1

[74] Altman SJ, Aminzadeh B, Balhoff MT, Bennett PC, Bryant SL, Cardenas MB, et al. Chemical and hydrodynamic mechanisms for long-term geological carbon storage. J Phys Chem C 2014;118(28):15103–13. link1

[75] Blunt MJ. Multiphase flow in permeable media: a pore-scale perspective. Cambridge: Cambridge University Press; 2017 Feb. link1

[76] Alhosani A, Scanziani A, Lin Q, Raeini AQ, Bijeljic B, Blunt MJ. Pore-scale mechanisms of CO2 storage in oilfields. Sci Rep 2020;10:8534. link1

Related Research