Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 13, Issue 6 doi: 10.1016/j.eng.2022.03.008

Functionalized Hydrogels for Articular Cartilage Tissue Engineering

a Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
b Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong,
Hong Kong 999077, China
c AO Research Institute Davos, Davos, CH 7270, Switzerland
d Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen
University, Shenzhen 518000, China
e Department of Orthopaedics and Sports Medicine & Department of Otorhinolaryngology, Erasmus MC, University Medical Center, Rotterdam 3000 CA, Netherlands
f Department of Biomechanical Engineering, Delft University of Technology, Delft 2600 AA, Netherlands
g Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, The Chinese Academy of Sciences, Shenzhen 518000, China

# These authors contributed equally to this work.

 

Received: 2021-08-19 Revised: 2022-02-08 Accepted: 2022-03-01 Available online: 2022-04-12

Next Previous

Abstract

Articular cartilage (AC) is an avascular and flexible connective tissue located on the bone surface in the diarthrodial joints. AC defects are common in the knees of young and physically active individuals. Because of the lack of suitable tissue-engineered artificial matrices, current therapies for AC defects, especially full-thickness AC defects and osteochondral interfaces, fail to replace or regenerate damaged cartilage adequately. With rapid research and development advancements in AC tissue engineering (ACTE), functionalized hydrogels have emerged as promising cartilage matrix substitutes because of their favorable biomechanical properties, water content, swelling ability, cytocompatibility, biodegradability, and lubricating behaviors. They can be rationally designed and conveniently tuned to simulate the extracellular matrix of cartilage. This article briefly introduces the composition, structure, and function of AC and its defects, followed by a comprehensive review of the exquisite (bio)design and (bio)fabrication of functionalized hydrogels for AC repair. Finally, we summarize the challenges encountered in functionalized hydrogel-based strategies for ACTE both in vivo and in vitro and the future directions for clinical translation.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

References

[ 1 ] Zhou L, Gjvm VO, Malda J, Stoddart MJ, Lai Y, Richards RG, et al. Innovative tissue-engineered strategies for osteochondral defect repair and regeneration: current progress and challenges. Adv Healthc Mater 2020;9 (23):2001008. link1

[ 2 ] Lin J, Shi Y, Men Y, Wang X, Ye J, Zhang C. Mechanical roles in formation of oriented collagen fibers. Tissue Eng Part B Rev 2020;26(2):116–28. link1

[ 3 ] Akkiraju H, Nohe A. Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration. J Dev Biol 2015;3(4):177–92. link1

[ 4 ] Li J, Pei M. Decellularized stem cell matrix: a novel approach for autologous chondrocyte implantation-based cartilage repair. In: Hayat M, editor. Stem cells and cancer stem cells. Dordrecht: Springer; 2014. p. 109–15. link1

[ 5 ] Vaquero-Picado A, Rodríguez-Merchán EC. Cartilage injuries of the knee. In: Rodríguez-Merchán E, Liddle A, editors. Joint preservation in the adult knee. Cham: Springer; 2017. p. 127–41. link1

[ 6 ] Bowland P, Ingham E, Jennings L, Fisher J. Review of the biomechanics and biotribology of osteochondral grafts used for surgical interventions in the knee. Proc Inst Mech Eng H 2015;229(12):879–88. link1

[ 7 ] Dhinsa BS, Adesida AB. Current clinical therapies for cartilage repair, their limitation and the role of stem cells. Curr Stem Cell Res Ther 2012;7 (2):143–8. link1

[ 8 ] Bao W, Li M, Yang Y, Wan Y, Wang X, Bi N, et al. Advancements and frontiers in the high performance of natural hydrogels for cartilage tissue engineering. Front Chem 2020;8:53. link1

[ 9 ] Stampoultzis T, Karami P, Pioletti DP. Thoughts on cartilage tissue engineering: a 21st century perspective. Curr Res Transl Med 2021;69 (3):103299. link1

[10] Rahmani Del Bakhshayesh A, Babaie S, Tayefi Nasrabadi H, Asadi N, Akbarzadeh A, Abedelahi A. An overview of various treatment strategies, especially tissue engineering for damaged articular cartilage. Artif Cells Nanomed Biotechnol 2020;48(1):1089–104. link1

[11] Carballo CB, Nakagawa Y, Sekiya I, Rodeo SA. Basic science of articular cartilage. Clin Sports Med 2017;36(3):413–25. link1

[12] Müller-Gerbl M, Schulte E, Putz R. The thickness of the calcified layer of articular cartilage: a function of the load supported? J Anat 1987;154:103–11. link1

[13] Wu J, Chen Q, Deng C, Xu B, Zhang Z, Yang Y, et al. Exquisite design of injectable hydrogels in cartilage repair. Theranostics 2020;10(21):9843–64. link1

[14] Hafezi M, Nouri Khorasani S, Zare M, Esmaeely Neisiany R, Davoodi P. Advanced hydrogels for cartilage tissue engineering: recent progress and future directions. Polymers 2021;13(23):4199. link1

[15] Jiang S, Guo W, Tian G, Luo X, Peng L, Liu S, et al. Clinical application status of articular cartilage regeneration techniques: tissue-engineered cartilage brings new hope. Stem Cells Int 2020;2020:5690252. link1

[16] Everhart JS, Campbell AB, Abouljoud MM, Kirven JC, Flanigan DC. Costefficacy of knee cartilage defect treatments in the United States. Am J Sports Med 2020;48(1):242–51. link1

[17] Lanza R, Langer R, Vacanti JP, Atala A, editors. Principles of tissue engineering. London: Academic Press; 2020. link1

[18] Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol 2015;11 (1):21–34. link1

[19] Thorp H, Kim K, Kondo M, Maak T, Grainger DW, Okano T. Trends in articular cartilage tissue engineering: 3D mesenchymal stem cell sheets as candidates for engineered hyaline-like cartilage. Cells 2021;10(3):643. link1

[20] Khademhosseini A, Langer R. A decade of progress in tissue engineering. Nat Protoc 2016;11(10):1775–81. link1

[21] Bahram M, Mohseni N, Moghtader M. An introduction to hydrogels and some recent applications. In: Majee SB, editor. Emerging concepts in analysis and applications of hydrogels. IntechOpen; 2016. p. 9–38. link1

[22] Aswathy SH, Narendrakumar U, Manjubala I. Commercial hydrogels for biomedical applications. Heliyon 2020;6(4):e03719. link1

[23] Frachini EC, Petri DF. Magneto-responsive hydrogels: preparation, characterization, biotechnological and environmental applications. J Braz Chem Soc 2019;30(10):2010–28. link1

[24] Zhang Y, Liu X, Zeng L, Zhang J, Zuo J, Zou J, et al. Polymer fiber scaffolds for bone and cartilage tissue engineering. Adv Funct Mater 2019;29 (36):1903279. link1

[25] Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med 2019;30(10):115. link1

[26] Leberfinger AN, Ravnic DJ, Dhawan A, Ozbolat IT. Concise review: bioprinting of stem cells for transplantable tissue fabrication. Stem Cells Transl Med 2017;6(10):1940–8. link1

[27] Boso D, Maghin E, Carraro E, Giagante M, Pavan P, Piccoli M. Extracellular matrix-derived hydrogels as biomaterial for different skeletal muscle tissue replacements. Materials 2020;13(11):2483. link1

[28] Ahearne M. Introduction to cell-hydrogel mechanosensing. Interface Focus 2014;4(2):20130038. link1

[29] Clevenger TN, Luna G, Boctor D, Fisher SK, Clegg DO. Cell-mediated remodeling of biomimetic encapsulating hydrogels triggered by adipogenic differentiation of adipose stem cells. J Tissue Eng 2016;7:2041731416670482. link1

[30] Wang C, Feng N, Chang F, Wang J, Yuan B, Cheng Y, et al. Injectable cholesterol-enhanced stereocomplex polylactide thermogel loading chondrocytes for optimized cartilage regeneration. Adv Healthc Mater 2019;8(14):e1900312. link1

[31] Liu J, Qu S, Suo Z, Yang W. Functional hydrogel coatings. Natl Sci Rev 2021;8 (2):nwaa254. link1

[32] Zhang Y, Yu J, Ren K, Zuo J, Ding J, Chen X. Thermosensitive hydrogels as scaffolds for cartilage tissue engineering. Biomacromolecules 2019;20 (4):1478–92. link1

[33] Wei W, Ma Y, Yao X, Zhou W, Wang X, Li C, et al. Advanced hydrogels for the repair of cartilage defects and regeneration. Bioact Mater 2020;6 (4):998–1011. link1

[34] Aisenbrey EA, Bilousova G, Payne K, Bryant SJ. Dynamic mechanical loading and growth factors influence chondrogenesis of induced pluripotent mesenchymal progenitor cells in a cartilage-mimetic hydrogel. Biomater Sci 2019;7(12):5388–403. link1

[35] Lv X, Sun C, Hu B, Chen S, Wang Z, Wu Q, et al. Simultaneous recruitment of stem cells and chondrocytes induced by a functionalized self-assembling peptide hydrogel improves endogenous cartilage regeneration. Front Cell Dev Biol 2020;8:864. link1

[36] Xu J, Feng Q, Lin S, Yuan W, Li R, Li J, et al. Injectable stem cell-laden supramolecular hydrogels enhance in situ osteochondral regeneration via the sustained co-delivery of hydrophilic and hydrophobic chondrogenic molecules. Biomaterials 2019;210:51–61. link1

[37] Cucchiarini M, Madry H. Biomaterial-guided delivery of gene vectors for targeted articular cartilage repair. Nat Rev Rheumatol 2019;15(1): 18–29. link1

[38] Novak T, Seelbinder B, Twitchell CM, Voytik-Harbin SLP, Neu CPP. Dissociated and reconstituted cartilage microparticles in densified collagen induce local hMSC differentiation. Adv Funct Mater 2016;26(30):5427–36. link1

[39] Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, et al. Printing threedimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 2014;5(1):3935. link1

[40] Jiang X, Liu J, Liu Q, Lu Z, Zheng L, Zhao J, et al. Therapy for cartilage defects: functional ectopic cartilage constructed by cartilage-simulating collagen, chondroitin sulfate and hyaluronic acid (CCH) hybrid hydrogel with allogeneic chondrocytes. Biomater Sci 2018;6(6):1616–26. link1

[41] Yuan L, Li B, Yang J, Ni Y, Teng Y, Guo L, et al. Effects of composition and mechanical property of injectable collagen I/II composite hydrogels on chondrocyte behaviors. Tissue Eng Part A 2016;22(11–12):899–906. link1

[42] Kilmer CE, Battistoni CM, Cox A, Breur GJ, Panitch A, Liu JC. Collagen type I and II blend hydrogel with autologous mesenchymal stem cells as a scaffold for articular cartilage defect repair. ACS Biomater Sci Eng 2020;6(6): 3464–76. link1

[43] Pauly HM, Place LW, Haut Donahue TL, Kipper MJ. Mechanical properties and cell compatibility of agarose hydrogels containing proteoglycan mimetic graft copolymers. Biomacromolecules 2017;18(7):2220–9. link1

[44] Keane TJ, DeWard A, Londono R, Saldin LT, Castleton AA, Carey L, et al. Tissuespecific effects of esophageal extracellular matrix. Tissue Eng Part A 2015;21 (17–18):2293–300. link1

[45] Zhang X, Liu Y, Luo C, Zhai C, Li Z, Zhang Y, et al. Crosslinker-free silk/ decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering. Mater Sci Eng C 2021;118:111388. link1

[46] Beck EC, Barragan M, Libeer TB, Kieweg SL, Converse GL, Hopkins RA, et al. Chondroinduction from naturally derived cartilage matrix: a comparison between devitalized and decellularized cartilage encapsulated in hydrogel pastes. Tissue Eng Part A 2016;22(7–8):665–79. link1

[47] Naghizadeh Z, Karkhaneh A, Nokhbatolfoghahaei H, Farzad-Mohajeri S, RezaiRad M, Dehghan MM, et al. Cartilage regeneration with dual-drug-releasing injectable hydrogel/microparticle system: in vitro and in vivo study. J Cell Physiol 2021;236(3):2194–204. link1

[48] Kim YS, Majid M, Melchiorri AJ, Mikos AG. Applications of decellularized extracellular matrix in bone and cartilage tissue engineering. Bioeng Transl Med 2018;4(1):83–95. link1

[49] Chang CH, Chen CC, Liao CH, Lin FH, Hsu YM, Fang HW. Human acellular cartilage matrix powders as a biological scaffold for cartilage tissue engineering with synovium-derived mesenchymal stem cells. J Biomed Mater Res A 2014;102(7):2248–57. link1

[50] Beachley V, Ma G, Papadimitriou C, Gibson M, Corvelli M, Elisseeff J. Extracellular matrix particle-glycosaminoglycan composite hydrogels for regenerative medicine applications. J Biomed Mater Res A 2018; 106(1):147–59. link1

[51] Levinson C, Cavalli E, Sindi DM, Kessel B, Zenobi-Wong M, Preiss S, et al. Chondrocytes from device-minced articular cartilage show potent outgrowth into fibrin and collagen hydrogels. Orthop J Sports Med 2019; 7(9):2325967119867618. link1

[52] Christiani T, Mys K, Dyer K, Kadlowec J, Iftode C, Vernengo AJ. Using embedded alginate microparticles to tune the properties of in situ forming poly(N-isopropylacrylamide)-graft-chondroitin sulfate bioadhesive hydrogels for replacement and repair of the nucleus pulposus of the intervertebral disc. JOR Spine 2021;4(3):e1161. link1

[53] Xing L, Sun J, Tan H, Yuan G, Li J, Jia Y, et al. Covalently polysaccharide-based alginate/chitosan hydrogel embedded alginate microspheres for BSA encapsulation and soft tissue engineering. Int J Biol Macromol 2019;127:340–8. link1

[54] DeVolder RJ, Kim IW, Kim ES, Kong H. Modulating the rigidity and mineralization of collagen gels using poly(lactic-co-glycolic acid) microparticles. Tissue Eng Part A 2012;18(15–16):1642–51. link1

[55] Beck EC, Barragan M, Tadros MH, Kiyotake EA, Acosta FM, Kieweg SL, et al. Chondroinductive hydrogel pastes composed of naturally derived devitalized cartilage. Ann Biomed Eng 2016;44(6):1863–80. link1

[56] Lindberg GCJ, Longoni A, Lim KS, Rosenberg AJ, Hooper GJ, Gawlitta D, et al. Intact vitreous humor as a potential extracellular matrix hydrogel for cartilage tissue engineering applications. Acta Biomater 2019;85:117–30. link1

[57] Means AK, Shrode CS, Whitney LV, Ehrhardt DA, Grunlan MA. Double network hydrogels that mimic the modulus, strength, and lubricity of cartilage. Biomacromolecules 2019;20(5):2034–42. link1

[58] Milner PE, Parkes M, Puetzer JL, Chapman R, Stevens MM, Cann P, et al. A low friction, biphasic and boundary lubricating hydrogel for cartilage replacement. Acta Biomater 2018;65:102–11. link1

[59] Zhang K, Yan W, Simic R, Benetti EM, Spencer ND. Versatile surface modification of hydrogels by surface-initiated, Cu0 -mediated controlled radical polymerization. ACS Appl Mater Interfaces 2020;12(5):6761–7. link1

[60] Rong M, Liu H, Scaraggi M, Bai Y, Bao L, Ma S, et al. High lubricity meets load capacity: cartilage mimicking bilayer structure by brushing up stiff hydrogels from subsurface. Adv Funct Mater 2020;30(39):2004062. link1

[61] Lin W, Kluzek M, Iuster N, Shimoni E, Kampf N, Goldberg R, et al. Cartilageinspired, lipid-based boundary-lubricated hydrogels. Science 2020;370 (6514):335–8. link1

[62] Xie R, Yao H, Mao AS, Zhu Y, Qi D, Jia Y, et al. Biomimetic cartilage-lubricating polymers regenerate cartilage in rats with early osteoarthritis. Nat Biomed Eng 2021;5(10):1189–201. link1

[63] Lien SM, Ko LY, Huang TJ. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater 2009;5(2):670–9. link1

[64] Han Y, Lian M, Wu Q, Qiao Z, Sun B, Dai K. Effect of pore size on cell behavior using melt electrowritten scaffolds. Front Bioeng Biotechnol 2021;9: 629270. link1

[65] Gupte MJ, Swanson WB, Hu J, Jin X, Ma H, Zhang Z, et al. Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization. Acta Biomater 2018;82:1–11. link1

[66] Qazi TH, Tytgat L, Dubruel P, Duda GN, Van Vlierberghe S, Geissler S. Extrusion printed scaffolds with varying pore size as modulators of MSC angiogenic paracrine effects. ACS Biomater Sci Eng 2019;5(10):5348–58. link1

[67] Almeida HV, Cunniffe GM, Vinardell T, Buckley CT, O’Brien FJ, Kelly DJ. Coupling freshly isolated CD44+ infrapatellar fat pad-derived stromal cells with a TGF-b3 eluting cartilage ECM-derived scaffold as a single-stage strategy for promoting chondrogenesis. Adv Healthc Mater 2015;4 (7):1043–53. link1

[68] Al-Sabah A, Burnell SEA, Simoes IN, Jessop Z, Badiei N, Blain E, et al. Structural and mechanical characterization of crosslinked and sterilised nanocellulosebased hydrogels for cartilage tissue engineering. Carbohydr Polym 2019;212:242–51. link1

[69] Gao X, Gao L, Groth T, Liu T, He D, Wang M, et al. Fabrication and properties of an injectable sodium alginate/PRP composite hydrogel as a potential cell carrier for cartilage repair. J Biomed Mater Res A 2019;107(9):2076–87. link1

[70] Wolf MT, Daly KA, Brennan-Pierce EP, Johnson SA, Carruthers CA, D’Amore A, et al. A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials 2012;33(29):7028–38. link1

[71] Qi C, Liu J, Jin Y, Xu L, Wang G, Wang Z, et al. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage. Biomaterials 2018;163:89–104. link1

[72] Haung SM, Lin YT, Liu SM, Chen JC, Chen WC. In vitro evaluation of a composite gelatin–hyaluronic acid–alginate porous scaffold with different pore distributions for cartilage regeneration. Gels 2021;7(4):165. link1

[73] Han LH, Lai JH, Yu S, Yang F. Dynamic tissue engineering scaffolds with stimuli-responsive macroporosity formation. Biomaterials 2013;34 (17):4251–8. link1

[74] Dinescu S, Galateanu B, Radu E, Hermenean A, Lungu A, Stancu IC, et al. A 3D porous gelatin-alginate-based-IPN acts as an efficient promoter of chondrogenesis from human adipose-derived stem cells. Stem Cells Int 2015;2015:252909. link1

[75] Arnold MP, Daniels AU, Ronken S, García HA, Friederich NF, Kurokawa T, et al. Acrylamide polymer double-network hydrogels: candidate cartilage repair materials with cartilage-like dynamic stiffness and attractive surgery-related attachment mechanics. Cartilage 2011;2(4):374–83. link1

[76] Yu R, Zhang Y, Barboiu M, Maumus M, Noël D, Jorgensen C, et al. Biobased pHresponsive and self-healing hydrogels prepared from O-carboxymethyl chitosan and a 3-dimensional dynamer as cartilage engineering scaffold. Carbohydr Polym 2020;244:116471. link1

[77] Owida HA, Yang R, Cen L, Kuiper NJ, Yang Y. Induction of zonal-specific cellular morphology and matrix synthesis for biomimetic cartilage regeneration using hybrid scaffolds. J R Soc Interface 2018;15 (143):20180310. link1

[78] Schwab A, Hélary C, Richards RG, Alini M, Eglin D, D’Este M. Tissue mimetic hyaluronan bioink containing collagen fibers with controlled orientation modulating cell migration and alignment. Mater Today Bio 2020;7:100058. link1

[79] Moncal KK, Ozbolat V, Datta P, Heo DN, Ozbolat IT. Thermally-controlled extrusion-based bioprinting of collagen. J Mater Sci Mater Med 2019;30 (5):55. link1

[80] Betsch M, Cristian C, Lin YY, Blaeser A, Schöneberg J, Vogt M, et al. Incorporating 4D into bioprinting: real-time magnetically directed collagen fiber alignment for generating complex multilayered tissues. Adv Healthc Mater 2018;7(21):e1800894. link1

[81] Ren X, Wang F, Chen C, Gong X, Yin L, Yang L. Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient. BMC Musculoskelet Disord 2016;17(1):301. link1

[82] Mellati A, Fan CM, Tamayol A, Annabi N, Dai S, Bi J, et al. Microengineered 3D cell-laden thermoresponsive hydrogels for mimicking cell morphology and orientation in cartilage tissue engineering. Biotechnol Bioeng 2017;114 (1):217–31. link1

[83] Idaszek J, Costantini M, Karlsen TA, Jaroszewicz J, Colosi C, Testa S, et al. 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head. Biofabrication 2019;11(4):044101. link1

[84] Grogan SP, Pauli C, Chen P, Du J, Chung CB, Kong SD, et al. In situ tissue engineering using magnetically guided three-dimensional cell patterning. Tissue Eng Part C Methods 2012;18(7):496–506. link1

[85] Khorshidi S, Karkhaneh A. A hydrogel/particle composite with gradient in oxygen releasing microparticle for oxygenation of the cartilage-to-bone interface: modeling and experimental viewpoints. Mater Sci Eng C 2021;118:111522. link1

[86] Cui X, Breitenkamp K, Finn MG, Lotz M, D’Lima DD. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A 2012;18(11–12):1304–12. link1

[87] Zhu D, Trinh P, Liu E, Yang F. Biochemical and mechanical gradients synergize to enhance cartilage zonal organization in 3D. ACS Biomater Sci Eng 2018;4 (10):3561–9. link1

[88] Mohan N, Wilson J, Joseph D, Vaikkath D, Nair PD. Biomimetic fiber assembled gradient hydrogel to engineer glycosaminoglycan enriched and mineralized cartilage: an in vitro study. J Biomed Mater Res A 2015;103 (12):3896–906. link1

[89] Han F, Zhou F, Yang X, Zhao J, Zhao Y, Yuan X. A pilot study of conically graded chitosan-gelatin hydrogel/PLGA scaffold with dual-delivery of TGF-b1 and BMP-2 for regeneration of cartilage–bone interface. J Biomed Mater Res B Appl Biomater 2015;103(7):1344–53. link1

[90] Qiao Z, Lian M, Han Y, Sun B, Zhang X, Jiang W, et al. Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capacity for functional osteochondral regeneration. Biomaterials 2021;266:120385. link1

[91] Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 2012;33(26):6020–41. link1

[92] Spiller KL, Maher SA, Lowman AM. Hydrogels for the repair of articular cartilage defects. Tissue Eng Part B Rev 2011;17(4):281–99. link1

[93] Söntjens SH, Nettles DL, Carnahan MA, Setton LA, Grinstaff MW. Biodendrimer-based hydrogel scaffolds for cartilage tissue repair. Biomacromolecules 2006;7(1):310–6. link1

[94] Lee CR, Grodzinsky AJ, Spector M. The effects of cross-linking of collagen– glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis. Biomaterials 2001;22 (23):3145–54. link1

[95] Cheng NC, Estes BT, Young TH, Guilak F. Genipin-crosslinked cartilagederived matrix as a scaffold for human adipose-derived stem cell chondrogenesis. Tissue Eng Part A 2013;19(3–4):484–96. link1

[96] Tu Y, Chen N, Li C, Liu H, Zhu R, Chen S, et al. Advances in injectable selfhealing biomedical hydrogels. Acta Biomater 2019;90:1–20. link1

[97] Zhang S, Huang D, Lin H, Xiao Y, Zhang X. Cellulose nanocrystal reinforced collagen-based nanocomposite hydrogel with self-healing and stressrelaxation properties for cell delivery. Biomacromolecules 2020;21 (6):2400–8. link1

[98] Ma F, Ge Y, Liu N, Pang X, Shen X, Tang B. In situ fabrication of a composite hydrogel with tunable mechanical properties for cartilage tissue engineering. J Mater Chem B Mater Biol Med 2019;7(15):2463–73. link1

[99] Abdollahiyan P, Oroojalian F, Mokhtarzadeh A, de la Guardia M. Hydrogelbased 3D bioprinting for bone and cartilage tissue engineering. Biotechnol J 2020;15(12):e2000095. link1

[100] Abdulghani S, Morouço PG. Biofabrication for osteochondral tissue regeneration: bioink printability requirements. J Mater Sci Mater Med 2019;30(2):20. link1

[101] Beckett LE, Lewis JT, Tonge TK, Korley LTJ. Enhancement of the mechanical properties of hydrogels with continuous fibrous reinforcement. ACS Biomater Sci Eng 2020;6(10):5453–73. link1

[102] Yan X, Chen Q, Zhu L, Chen H, Wei D, Chen F, et al. High strength and selfhealable gelatin/polyacrylamide double network hydrogels. J Mater Chem B Mater Biol Med 2017;5(37):7683–91. link1

[103] Young JL, Engler AJ. Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials 2011;32 (4):1002–9. link1

[104] Xue B, Tang D, Wu X, Xu Z, Gu J, Han Y, et al. Engineering hydrogels with homogeneous mechanical properties for controlling stem cell lineage specification. Proc Natl Acad Sci USA 2021;118(37):e2110961118. link1

[105] Kloxin AM, Kasko AM, Salinas CN, Anseth KS. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 2009;324 (5923):59–63. link1

[106] Bahney CS, Hsu CW, Yoo JU, West JL, Johnstone B. A bioresponsive hydrogel tuned to chondrogenesis of human mesenchymal stem cells. FASEB J 2011;25 (5):1486–96. link1

[107] Wang M, Li J, Li W, Du Z, Qin S. Preparation and characterization of novel poly (vinyl alcohol)/collagen double-network hydrogels. Int J Biol Macromol 2018;118(Pt A):41–8. link1

[108] Li L, Yu F, Zheng L, Wang R, Yan W, Wang Z, et al. Natural hydrogels for cartilage regeneration: modification, preparation and application. J Orthop Translat 2018;17:26–41. link1

[109] Medtronic. INFUSE Bone Graft [Internet]. Medtronic; [updated 2018 Nov; cited 2021 Jun 1]. Available from: https://global.medtronic.com/xg-en/e/ response/infuse-bone-graft.html. link1

[110] Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater 2016;1(12):1–17. link1

[111] Lin CC, Metters AT. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 2006;58(12– 13):1379–408. link1

[112] Mir MUH, Maurya JK, Ali S, Ubaid-Ullah S, Khan AB, Patel R. Molecular interaction of cationic gemini surfactant with bovine serum albumin: a spectroscopic and molecular docking study. Process Biochem 2014;49 (4):623–30. link1

[113] Hiemstra C, Zhong Z, Van Tomme SR, van Steenbergen MJ, Jacobs JJ, Otter WD, et al. In vitro and in vivo protein delivery from in situ forming poly(ethylene glycol)–poly(lactide) hydrogels. J Control Release 2007;119(3):320–7. link1

[114] Levinson C, Lee M, Applegate LA, Zenobi-Wong M. An injectable heparinconjugated hyaluronan scaffold for local delivery of transforming growth factor b1 promotes successful chondrogenesis. Acta Biomater 2019;99:168–80. link1

[115] Rowan SJ, Cantrill SJ, Cousins GR, Sanders JK, Stoddart JF. Dynamic covalent chemistry. Angew Chem Int Ed Engl 2002;41(6):898–952. link1

[116] Jin R, Moreira Teixeira LS, Krouwels A, Dijkstra PJ, van Blitterswijk CA, Karperien M, et al. Synthesis and characterization of hyaluronic acid–poly (ethylene glycol) hydrogels via Michael addition: an injectable biomaterial for cartilage repair. Acta Biomater 2010;6(6):1968–77. link1

[117] Hixon KR, Lu T, Sell SA. A comprehensive review of cryogels and their roles in tissue engineering applications. Acta Biomater 2017;62:29–41. link1

[118] Bencherif SA, Sands RW, Bhatta D, Arany P, Verbeke CS, Edwards DA, et al. Injectable preformed scaffolds with shape-memory properties. Proc Natl Acad Sci USA 2012;109(48):19590–5. link1

[119] Eggermont LJ, Rogers ZJ, Colombani T, Memic A, Bencherif SA. Injectable cryogels for biomedical applications. Trends Biotechnol 2020;38(4):418–31. link1

[120] Han ME, Kim SH, Kim HD, Yim HG, Bencherif SA, Kim TI, et al. Extracellular matrix-based cryogels for cartilage tissue engineering. Int J Biol Macromol 2016;93(Pt B):1410–9. link1

[121] Bölgen N, Yang Y, Korkusuz P, Güzel E, El Haj AJ, Piskin E. 3D ingrowth of bovine articular chondrocytes in biodegradable cryogel scaffolds for cartilage tissue engineering. J Tissue Eng Regen Med 2011;5(10):770–9. link1

[122] Hwang Y, Sangaj N, Varghese S. Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering. Tissue Eng Part A 2010;16(10):3033–41. link1

[123] Chen CH, Kuo CY, Wang YJ, Chen JP. Dual function of glucosamine in gelatin/ hyaluronic acid cryogel to modulate scaffold mechanical properties and to maintain chondrogenic phenotype for cartilage tissue engineering. Int J Mol Sci 2016;17(11):1957. link1

[124] Wang L, Rao RR, Stegemann JP. Delivery of mesenchymal stem cells in chitosan/collagen microbeads for orthopedic tissue repair. Cells Tissues Organs 2013;197(5):333–43. link1

[125] Li F, Truong VX, Fisch P, Levinson C, Glattauer V, Zenobi-Wong M, et al. Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells. Acta Biomater 2018;77:48–62. link1

[126] Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 2017;5(1):17014. link1

[127] Reyes R, Delgado A, Sánchez E, Fernández A, Hernández A, Evora C. Repair of an osteochondral defect by sustained delivery of BMP-2 or TGFb1 from a bilayered alginate-PLGA scaffold. J Tissue Eng Regen Med 2014;8(7):521–33. link1

[128] Levato R, Visser J, Planell JA, Engel E, Malda J, Mateos-Timoneda MA. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication 2014;6(3):035020. link1

[129] Maudens P, Seemayer CA, Pfefferlé F, Jordan O, Allémann E. Nanocrystals of a potent p38 MAPK inhibitor embedded in microparticles: therapeutic effects in inflammatory and mechanistic murine models of osteoarthritis. J Control Release 2018;276:102–12. link1

[130] Maudens P, Seemayer CA, Thauvin C, Gabay C, Jordan O, Allémann E. Nanocrystal–polymer particles: extended delivery carriers for osteoarthritis treatment. Small 2018;14(8):1703108. link1

[131] Maudens P, Meyer S, Seemayer CA, Jordan O, Allémann E. Self-assembled thermoresponsive nanostructures of hyaluronic acid conjugates for osteoarthritis therapy. Nanoscale 2018;10(4):1845–54. link1

[132] Maudens P, Jordan O, Allémann E. Recent advances in intra-articular drug delivery systems for osteoarthritis therapy. Drug Discov Today 2018;23 (10):1761–75. link1

[133] Tamesue S, Endo T, Ueno Y, Tsurumaki F. Sewing hydrogels: adhesion of hydrogels utilizing in situ polymerization of linear polymers inside gel networks. Macromolecules 2019;52(15):5690–7. link1

[134] Lee TT, García JR, Paez JI, Singh A, Phelps EA, Weis S, et al. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat Mater 2015;14(3):352–60. link1

[135] Yang Y, Zhang J, Liu Z, Lin Q, Liu X, Bao C, et al. Tissue-integratable and biocompatible photogelation by the imine crosslinking reaction. Adv Mater 2016;28(14):2724–30. link1

[136] Zhou F, Hong Y, Zhang X, Yang L, Li J, Jiang D, et al. Tough hydrogel with enhanced tissue integration and in situ forming capability for osteochondral defect repair. Appl Mater Today 2018;13:32–44. link1

[137] Xie R, Zheng W, Guan L, Ai Y, Liang Q. Engineering of hydrogel materials with perfusable microchannels for building vascularized tissues. Small 2020;16 (15):e1902838. link1

[138] Walker BW, Lara RP, Mogadam E, Yu CH, Kimball W, Annabi N. Rational design of microfabricated electroconductive hydrogels for biomedical applications. Prog Polym Sci 2019;92:135–57. link1

[139] Foyt DA, Norman MDA, Yu TTL, Gentleman E. Exploiting advanced hydrogel technologies to address key challenges in regenerative medicine. Adv Healthc Mater 2018;7(8):e1700939. link1

[140] Zhang J, Wehrle E, Rubert M, Müller R. 3D bioprinting of human tissues: biofabrication, bioinks, and bioreactors. Int J Mol Sci 2021;22(8):3971. link1

[141] Pedde RD, Mirani B, Navaei A, Styan T, Wong S, Mehrali M, et al. Emerging biofabrication strategies for engineering complex tissue constructs. Adv Mater 2017;29(19):1606061. link1

[142] Gao G, Yonezawa T, Hubbell K, Dai G, Cui X. Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol J 2015;10(10):1568–77. link1

[143] Teo MY, Kee S, RaviChandran N, Stuart L, Aw KC, Stringer J. Enabling freestanding 3D hydrogel microstructures with microreactive inkjet printing. ACS Appl Mater Interfaces 2020;12(1):1832–9. link1

[144] Gruene M, Deiwick A, Koch L, Schlie S, Unger C, Hofmann N, et al. Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods 2011;17(1):79–87. link1

[145] Yang J, Zhang YS, Yue K, Khademhosseini A. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater 2017;57:1–25. link1

[146] Zandi N, Sani ES, Mostafavi E, Ibrahim DM, Saleh B, Shokrgozar MA, et al. Nanoengineered shear-thinning and bioprintable hydrogel as a versatile platform for biomedical applications. Biomaterials 2021;267:120476. link1

[147] Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue HJ, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv 2015;1(9):e1500758. link1

[148] Shiwarski DJ, Hudson AR, Tashman JW, Feinberg AW. Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication. APL Bioeng 2021;5 (1):010904. link1

[149] O’Connell CD, Di Bella C, Thompson F, Augustine C, Beirne S, Cornock R, et al. Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site. Biofabrication 2016;8 (1):015019. link1

[150] Di Bella C, Duchi S, O’Connell CD, Blanchard R, Augustine C, Yue Z, et al. In situ handheld three-dimensional bioprinting for cartilage regeneration. J Tissue Eng Regen Med 2018;12(3):611–21. link1

[151] Duchi S, Onofrillo C, O’Connell CD, Blanchard R, Augustine C, Quigley AF, et al. Handheld co-axial bioprinting: application to in situ surgical cartilage repair. Sci Rep 2017;7(1):5837. link1

[152] O’Connell CD, Konate S, Onofrillo C, Kapsa R, Baker C, Duchi S, et al. Free-form co-axial bioprinting of a gelatin methacryloyl bio-ink by direct in situ photocrosslinking during extrusion. Bioprinting 2020;19:19. link1

[153] Yu Y, Moncal KK, Li J, Peng W, Rivero I, Martin JA, et al. Three-dimensional bioprinting using self-assembling scalable scaffold-free ‘‘tissue strands” as a new bioink. Sci Rep 2016;6(1):28714. link1

[154] Castilho M, Levato R, Bernal PN, de Ruijter M, Sheng CY, van Duijn J, et al. Hydrogel-based bioinks for cell electrowriting of well-organized living structures with micrometer-scale resolution. Biomacromolecules 2021;22 (2):855–66. link1

[155] Moroni L, Boland T, Burdick JA, De Maria C, Derby B, Forgacs G, et al. Biofabrication: a guide to technology and terminology. Trends Biotechnol 2018;36(4):384–402. link1

[156] Hong H, Seo YB, Kim DY, Lee JS, Lee YJ, Lee H, et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials 2020;232:119679. link1

[157] Aisenbrey EA, Tomaschke A, Kleinjan E, Muralidharan A, Pascual-Garrido C, McLeod RR, et al. A stereolithography-based 3D printed hybrid scaffold for in situ cartilage defect repair. Macromol Biosci 2018;18(2):1700267. link1

[158] Agostinacchio F, Mu X, Dirè S, Motta A, Kaplan DL. In situ 3D printing: opportunities with silk inks. Trends Biotechnol 2021;39(7):719–30. link1

[159] Li L, Yu F, Shi J, Shen S, Teng H, Yang J, et al. In situ repair of bone and cartilage defects using 3D scanning and 3D printing. Sci Rep 2017;7(1):9416. link1

[160] Ma K, Zhao T, Yang L, Wang P, Jin J, Teng H, et al. Application of roboticassisted in situ 3D printing in cartilage regeneration with HAMA hydrogel: an in vivo study. J Adv Res 2020;23:123–32. link1

[161] Imam SS, Hussain A, Altamimi MA, Alshehri S. Four-dimensional printing for hydrogel: theoretical concept, 4D materials, shape-morphing way, and future perspectives. Polymers 2021;13(21):3858. link1

[162] Champeau M, Heinze DA, Viana TN, de Souza ER, Chinellato AC, Titotto S. 4D printing of hydrogels: a review. Adv Funct Mater 2020;30(31):1910606. link1

[163] Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA. Biomimetic 4D printing. Nat Mater 2016;15(4):413–8. link1

[164] Hua M, Wu D, Wu S, Ma Y, Alsaid Y, He X. 4D printable tough and thermoresponsive hydrogels. ACS Appl Mater Interfaces 2021;13(11):12689–97. link1

[165] Ramaraju H, Akman RE, Safranski DL, Hollister SJ. Designing biodegradable shape memory polymers for tissue repair. Adv Funct Mater 2020;30 (44):2002014. link1

[166] Almeida HV, Sathy BN, Dudurych I, Buckley CT, O’Brien FJ, Kelly DJ. Anisotropic shape-memory alginate scaffolds functionalized with either type I or type II collagen for cartilage tissue engineering. Tissue Eng Part A 2017;23(1–2):55–68. link1

Related Research