Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 23, Issue 4 doi: 10.1016/j.eng.2022.03.021

AIE-Active Freeze-Tolerant Hydrogels Enable Multistage Information Encryption and Decryption at Subzero Temperatures

Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China

# These authors contributed equally to this work.

Received: 2021-10-09 Revised: 2022-03-01 Accepted: 2022-03-31 Available online: 2023-02-01

Next Previous

Abstract

Freeze-tolerant hydrogels can regulate the freezing behavior of the water inside them at subzero temperatures, thus maintaining their exceptional properties (e.g., intelligent responsiveness and liquid transporting) and extending their applications under cold conditions. Herein, a series of aggregation-induced emission (AIE)-active freeze-tolerant hydrogels are developed, which enable information encryption and decryption at subzero temperatures. The hydrogels possess varied freezing temperatures (Tf) depending on their betaine concentration. Above/below Tf, the information in the hydrogels that is encoded by means of AIE luminogens presents turn-off/-on fluorescence, thereby enabling the use of these hydrogels for information encryption and decryption. Moreover, by tuning the cooling procedures or introducing photothermal copper sulfide nanoparticles into the hydrogels via an in situ sulfidation process, together with certain irradiation conditions, multistage information readouts can be obtained, significantly enhancing the information security. Finally, because the decrypted information in the hydrogels is irreversibly sensitive to temperature fluctuation, external energy-free cryogenic anticounterfeiting labels built with the hydrogels are demonstrated, which can realize the visual and real-time viability monitoring of cryopreserved biosamples (e.g., mesenchymal stem cells and red blood cells) during cold-chain transportation (–80 °C).

SupplementaryMaterials

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

References

[ 1 ] Teyssier J, Saenko SV, van der Marel D, Milinkovitch MC. Photonic crystals cause active colour change in chameleons. Nat Commun 2015;6(1):6368. link1

[ 2 ] Mäthger LM, Hanlon RT. Malleable skin coloration in cephalopods: selective reflectance, transmission and absorbance of light by chromatophores and iridophores. Cell Tissue Res 2007;329(1):179‒86. link1

[ 3 ] Mäthger LM, Denton EJ, Marshall NJ, Hanlon RT. Mechanisms and behavioural functions of structural coloration in cephalopods. J R Soc Interface 2009;6 (Suppl 2):S149‒63. link1

[ 4 ] Qin M, Sun M, Bai R, Mao Y, Qian X, Sikka D, et al. Bioinspired hydrogel interferometer for adaptive coloration and chemical sensing. Adv Mater 2018;30(21):1800468. link1

[ 5 ] Ji X, Wu RT, Long L, Ke XS, Guo C, Ghang YJ, et al. Encoding, reading, and transforming information using multifluorescent supramolecular polymeric hydrogels. Adv Mater 2018;30(11):1705480. link1

[ 6 ] Le X, Shang H, Yan H, Zhang J, Lu W, Liu M, et al. A urease-containing fluorescent hydrogel for transient information storage. Angew Chem Int Ed Engl 2021;60(7):3640‒6. link1

[ 7 ] Ding L, Wang XD. Luminescent oxygen-sensitive ink to produce highly secured anticounterfeiting labels by inkjet printing. J Am Chem Soc 2020;142(31):13558‒64. link1

[ 8 ] Qin L, Liu X, He K, Yu G, Yuan H, Xu M, et al. Geminate labels programmed by two-tone microdroplets combining structural and fluorescent color. Nat Commun 2021;12(1):699. link1

[ 9 ] Li Z, Chen H, Li B, Xie Y, Gong X, Liu X, et al. Photoresponsive luminescent polymeric hydrogels for reversible information encryption and decryption. Adv Sci 2019;6(21):1901529. link1

[10] Zhang Y, Le X, Jian Y, Lu W, Zhang J, Chen T. 3D fluorescent hydrogel origami for multistage data security protection. Adv Funct Mater 2019;29(46):1905514. link1

[11] Wang H, Ji X, Page ZA, Sessler JL. Fluorescent materials-based information storage. Mater Chem Front 2020;4(4):1024‒39. link1

[12] Hou Y, Li Z, Hou J, Shi P, Li Y, Niu M, et al. Conditional mechanochromic fluorescence with turn-on response: a new way to encrypt and decrypt binary data. Dyes Pigm 2018;159:252‒61. link1

[13] Zhang M, Li Y, Gao K, Li Z, Liu Y, Liao Y, et al. A turn-on mechanochromic luminescent material serving as pressure sensor and rewritable optical data storage. Dyes Pigm 2020;173:107928. link1

[14] Lu L, Wang K, Wu H, Qin A, Tang BZ. Simultaneously achieving high capacity storage and multilevel anti-counterfeiting using electrochromic and electrofluorochromic dual-functional AIE polymers. Chem Sci 2021;12(20):7058‒65. link1

[15] Wei S, Li Z, Lu W, Liu H, Zhang J, Chen T, et al. Multicolor fluorescent polymeric hydrogels. Angew Chem Int Ed Engl 2021;60(16):8608‒24. link1

[16] Ji X, Li Z, Liu X, Peng HQ, Song F, Qi J, et al. A functioning macroscopic “Rubik’s cube” assembled via controllable dynamic covalent interactions. Adv Mater 2019;31(40):1902365. link1

[17] Sun J, Wang J, Chen M, Pu X, Wang G, Li L, et al. Fluorescence turn-on visualization of microscopic processes for self-healing gels by AIEgens and anticounterfeiting application. Chem Mater 2019;31(15):5683‒90. link1

[18] Li Z, Ji X, Xie H, Tang BZ. Aggregation-induced emission-active gels: fabrications, functions, and applications. Adv Mater 2021;33(33):2100021. link1

[19] Bat E, Lin EW, Saxer S, Maynard HD. Morphing hydrogel patterns by thermoreversible fluorescence switching. Macromol Rapid Commun 2014;35(14):1260‒5. link1

[20] Yuk H, Lu B, Zhao X. Hydrogel bioelectronics. Chem Soc Rev 2019;48(6):1642‒67. link1

[21] Won P, Kim KK, Kim H, Park JJ, Ha I, Shin J, et al. Transparent soft actuators/ sensors and camouflage skins for imperceptible soft robotics. Adv Mater 2021;33(19):2002397. link1

[22] Wu S, Shi H, Lu W, Wei S, Shang H, Liu H, et al. Aggregation-induced emissive carbon dots gels for octopus-inspired shape/color synergistically adjustable actuator. Angew Chem Int Ed Engl 2021;60(40):21890‒8. link1

[23] Larson C, Peele B, Li S, Robinson S, Totaro M, Beccai L, et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 2016;351(6277):1071‒4. link1

[24] Ilami M, Bagheri H, Ahmed R, Skowronek EO, MaterialsMarvi H., actuators, and sensors for soft bioinspired robots. Adv Mater 2021;33(19):2003139. link1

[25] Zhu CN, Bai T, Wang H, Ling J, Huang F, Hong W, et al. Dual-encryption in a shape-memory hydrogel with tunable fluorescence and reconfigurable architecture. Adv Mater 2021;33(29):2102023. link1

[26] Le X, Shang H, Wu S, Zhang J, Liu M, Zheng Y, et al. Heterogeneous fluorescent organohydrogel enables dynamic anti-counterfeiting. Adv Funct Mater 2021;31(52):2108365. link1

[27] Le X, Shang H, Gu S, Yin G, Shan F, Li D, et al. Fluorescent organohydrogel with thermal-induced color change for anti-counterfeiting. Chin J Chem 2022;40(3):337‒42. link1

[28] Qiu H, Wei S, Liu H, Zhan B, Yan H, Lu W, et al. Programming multistate aggregation-induced emissive polymeric hydrogel into 3D structures for ondemand information decryption and transmission. Adv Intell Syst 2021;3(6):2000239. link1

[29] Choi S, Eom Y, Kim SM, Jeong DW, Han J, Koo JM, et al. A self-healing nanofiberbased self-responsive time-temperature indicator for securing a cold-supply chain. Adv Mater 2020;32(11):1907064. link1

[30] Giwa S, Lewis JK, Alvarez L, Langer R, Roth AE, Church GM, et al. The promise of organ and tissue preservation to transform medicine. Nat Biotechnol 2017;35(6):530‒42. link1

[31] Chang T, Zhao G. Ice inhibition for cryopreservation: materials, strategies, and challenges. Adv Sci 2021;8(6):2002425. link1

[32] Rong Q, Lei W, Huang J, Liu M. Low temperature tolerant organohydrogel electrolytes for flexible solid-state supercapacitors. Adv Energy Mater 2018;8(31):1801967. link1

[33] Zhang XF, Ma X, Hou T, Guo K, Yin J, Wang Z, et al. Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels. Angew Chem Int Ed Engl 2019;58(22):7366‒70. link1

[34] Jian Y, Handschuh-Wang S, Zhang J, Lu W, Zhou X, Chen T. Biomimetic antifreezing polymeric hydrogels: keeping soft-wet materials active in cold environments. Mater Horiz 2021;8(2):351‒69. Correction in: Mater Horiz 2020;7(12):3339. link1

[35] Zhou D, Chen F, Handschuh-Wang S, Gan T, Zhou X, Zhou X. Biomimetic extreme-temperature- and environment-adaptable hydrogels. ChemPhysChem 2019;20(17):2139‒54. link1

[36] Chen F, Zhou D, Wang J, Li T, Zhou X, Gan T, et al. Rational fabrication of antifreezing, non-drying tough organohydrogels by one-pot solvent displacement. Angew Chem Int Ed Engl 2018;57(22):6568‒71. link1

[37] Morelle XP, Illeperuma WR, Tian K, Bai R, Suo Z, Vlassak JJ. Highly stretchable and tough hydrogels below water freezing temperature. Adv Mater 2018;30(35):1801541. link1

[38] Sui X, Guo H, Chen P, Zhu Y, Wen C, Gao Y, et al. Zwitterionic osmolyte-based hydrogels with antifreezing property, high conductivity, and stable flexibility at subzero temperature. Adv Funct Mater 2020;30(7):1907986. link1

[39] Zhang D, Liu Y, Liu Y, Peng Y, Tang Y, Xiong L, et al. A general crosslinker strategy to realize intrinsic frozen resistance of hydrogels. Adv Mater 2021;33(42):2104006. link1

[40] Rong Q, Lei W, Chen L, Yin Y, Zhou J, Liu M. Anti-freezing, conductive selfhealing organohydrogels with stable strain-sensitivity at subzero temperatures. Angew Chem Int Ed Engl 2017;56(45):14159‒63. link1

[41] Han L, Liu K, Wang M, Wang K, Fang L, Chen H, et al. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance. Adv Funct Mater 2018;28(3):1704195. link1

[42] Zhang W, Wu B, Sun S, Wu P. Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nat Commun 2021;12(1):4082. link1

[43] Jian Y, Wu B, Le X, Liang Y, Zhang Y, Zhang D, et al. Antifreezing and stretchable organohydrogels as soft actuators. Research 2019;2019:2384347. link1

[44] Jin X, Song L, Yang H, Dai C, Xiao Y, Zhang X, et al. Stretchable supercapacitor at -30 ℃. Energy Environ Sci 2021;14(5):3075‒85. link1

[45] Pei Z, Yuan Z, Wang C, Zhao S, Fei J, Wei L, et al. A flexible rechargeable zinc‒air battery with excellent low-temperature adaptability. Angew Chem Int Ed Engl 2020;59(12):4793‒9. link1

[46] Hong Y, Lam JWY, Tang BZ. Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun 2009;29(29):4332‒53. link1

[47] Hong Y, Lam JWY, Tang BZ. Aggregation-induced emission. Chem Soc Rev 2011;40(11):5361‒88. link1

[48] Yang Y, Zhang S, Zhang X, Gao L, Wei Y, Ji Y. Detecting topology freezing transition temperature of vitrimers by AIE luminogens. Nat Commun 2019;10(1):3165. link1

[49] Yao H, Wang J, Fan YQ, Zhou Q, Guan XW, Kan XT, et al. Supramolecular hydrogel-based AIEgen: construction and dual-channel recognition of negative charged dyes. Dyes Pigm 2019;167:16‒21. link1

[50] He Z, Liu P, Zhang S, Yan J, Wang M, Cai Z, et al. A freezing-induced turn-on imaging modality for real-time monitoring of cancer cells in cryosurgery. Angew Chem Int Ed Engl 2019;58(12):3834‒7. link1

[51] Miyagawa A, Harada M, Fukuhara G, Okada T. Space size-dependent transformation of tetraphenylethylene carboxylate aggregates by ice confinement. J Phys Chem B 2020;124(11):2209‒17. link1

[52] An L, Wang X, Rui X, Lin J, Yang H, Tian Q, et al. The in situ sulfidation of Cu2O by endogenous H2S for colon cancer theranostics. Angew Chem Int Ed Engl 2018;57(48):15782‒6. link1

[53] Yang J, Pan C, Zhang J, Sui X, Zhu Y, Wen C, et al. Exploring the potential of biocompatible osmoprotectants as highly efficient cryoprotectants. ACS Appl Mater Interfaces 2017;9(49):42516‒24. link1

[54] Sui X, Wen C, Yang J, Guo H, Zhao W, Li Q, et al. Betaine combined with membrane stabilizers enables solvent-free whole blood cryopreservation and one-step cryoprotectant removal. ACS Biomater Sci Eng 2019;5(2):1083‒91. link1

[55] Nomura M, Muramoto Y, Yasuda S, Takabe T, Kishitani S. The accumulation of glycinebetaine during cold acclimation in early and late cultivars of barley. Euphytica 1995;83(3):247‒50. link1

[56] Kishitani S, Watanabe K, Yasuda S, Arakawa K, Takabe T. Accumulation of glycinebetaine during cold acclimation and freezing tolerance in leaves of winter and spring barley plants. Plant Cell Environ 1994;17(1):89‒95. link1

[57] Yang J, Sui X, Wen C, Pan C, Zhu Y, Zhang J, et al. A hemocompatible cryoprotectant inspired by freezing-tolerant plants. Colloids Surf B Biointerfaces 2019;176:106‒14. link1

[58] Shao Q, Jiang S. Molecular understanding and design of zwitterionic materials. Adv Mater 2015;27(1):15‒26. link1

[59] Kiani H, Sun DW. Water crystallization and its importance to freezing of foods: a review. Trends Food Sci Technol 2011;22(8):407‒26. link1

[60] Song G, Zhang L, He C, Fang DC, Whitten PG, Wang H. Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding. Macromolecules 2013;46(18):7423‒35. link1

[61] Fang F, Xiao W, Tian Z. Challenges of NK cell-based immunotherapy in the new era. Front Med 2018;12(4):440‒50. link1

[62] Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discov 2020;19(3):200‒18. link1

[63] Labanieh L, Majzner RG, Mackall CL. Programming CAR-T cells to kill cancer. Nat Biomed Eng 2018;2(6):377‒91. link1

[64] Tewary M, Shakiba N, Zandstra PW. Stem cell bioengineering: building from stem cell biology. Nat Rev Genet 2018;19(10):595‒614. link1

[65] He W. Cell therapy: pharmacological intervention enters a third era. Engineering 2019;5(1):5‒9. link1

[66] Lu L, Tian Z, Wang X. Cell therapy: a new era of disease intervention. Engineering 2019;5(1):3‒4. link1

[67] Chen J, Hu C, Chen L, Tang L, Zhu Y, Xu X, et al. Clinical study of mesenchymal stem cell treatment for acute respiratory distress syndrome induced by epidemic influenza A (H7N9) infection: a hint for COVID-19 treatment. Engineering 2020;6(10):1153‒61. link1

[68] Scudellari M. Cryopreservation aims to engineer novel ways to freeze, store, and thaw organs. Proc Natl Acad Sci USA 2017;114(50):13060‒2. link1

[69] Pogozhykh D, Pogozhykh O, Prokopyuk V, Kuleshova L, Goltsev A, Blasczyk R, et al. Influence of temperature fluctuations during cryopreservation on vital parameters, differentiation potential, and transgene expression of placental multipotent stromal cells. Stem Cell Res Ther 2017;8(1):66. link1

[70] Germann A, Oh YJ, Schmidt T, Schön U, Zimmermann H, von Briesen H. Temperature fluctuations during deep temperature cryopreservation reduce PBMC recovery, viability and T-cell function. Cryobiology 2013;67(2):193‒200. link1

[71] Huebinger J, Han HM, Hofnagel O, Vetter IR, Bastiaens PIH, Grabenbauer M. Direct measurement of water states in cryopreserved cells reveals tolerance toward ice crystallization. Biophys J 2016;110(4):840‒9. link1

Related Research