Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 22, Issue 3 doi: 10.1016/j.eng.2022.04.023

A 39 GHz Dual-Channel Transceiver Chipset With an Advanced LTCC Package for 5G Multi-Beam MIMO Systems

a School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
b College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310058, China

Received: 2021-11-09 Revised: 2022-01-18 Accepted: 2022-04-17 Available online: 2022-08-27

Next Previous

Abstract

This article presents a 39 GHz transceiver front-end chipset for 5G multi-input multi-output (MIMO) applications. Each chip includes two variable-gain frequency-conversion channels and can support two simultaneous independent beams, and the chips also integrate a local-oscillator chain and digital module for multi-chip extension and gain-state control. To improve the radio-frequency performance, several circuit-level improvement techniques are proposed for the key building blocks in the front-end system. Furthermore, an advanced low-temperature co-fired ceramic process is developed to package the 39 GHz dual-channel transceiver chipset, and it achieves low packaging loss and high isolation between the two transmitting (TX)/receiving (RX) channels. Both the chip-level and system-in-package (SIP)-level measurements are conducted to demonstrate the performance of the transceiver chipset. The measurement characteristics show that the TX SIP provides 11 dB maximum gain and 10 dBm saturated output power, while the RX SIP achieves 52 dB maximum gain, 5.4 dB noise figure, and 7.2 dBm output 1 dB compression point. Single-channel communication link testing of the transceiver exhibits an error vector magnitude (EVM) of 3.72% and a spectral efficiency of 3.25 bit·s−1·Hz−1 for 64-quadrature amplitude modulation (QAM) modulation and an EVM of 3.76% and spectral efficiency of 3.9 bit·s−1·Hz−1 for 256-QAM modulation over a 1 m distance. Based on the chipset, a 39 GHz multi-beam prototype is also developed to perform the MIMO operation for 5G millimetre wave applications. The over-the-air communication link for one- and two-stream transmission indicates that the multi-beam prototype can cover a 5–150 m distance with comparable throughput.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18

Fig. 19

Fig. 20

Fig. 21

Fig. 22

Fig. 23

Fig. 24

Fig. 25

References

[ 1 ] Carlson EK. What will 5G bring? Engineering 2020;6(7):725–7. link1

[ 2 ] Sadhu B, Tousi Y, Hallin J, Sahl S, Reynolds SK, Renstrȍm Ȍ, et al. A 28 GHz 32- element TRX phased-array IC with concurrent dual-polarized operation and orthogonal phase and gain control for 5G communications. IEEE J Solid State Circuits 2017;52(12):3373–91. link1

[ 3 ] Kibaroglu K, Sayginer M, Rebeiz GM. A low-cost scalable 32-element 28 GHz phased array transceiver for 5G communication links based on a 2* 2 beamformer flip-chip unit cell. IEEE J Solid State Circuits 2018;53(5):1260–74. link1

[ 4 ] Chen CN, Lin YH, Hung LC, Tang TC, Chao WP, Chen CY, et al. 38 GHz phased array transmitter and receiver based on scalable phased array modules with endfire antenna arrays for 5G MMW data links. IEEE Trans Microw Theory Tech 2021;69(1):980–99. link1

[ 5 ] Yang B, Yu Z, Lan J, Zhang R, Zhou J, Hong W. Digital beamforming-based massive MIMO transceiver for 5G millimeter-wave communications. IEEE Trans Microw Theory Tech 2018;66(7):3403–18. link1

[ 6 ] Mondal S, Singh R, Hussein AI, Paramesh J. A 25–30 GHz fully-connected hybrid beamforming receiver for MIMO communication. IEEE J Solid State Circuits 2018;53(5):1275–87. link1

[ 7 ] Yeh YS, Floyd BA. Multibeam phased-arrays using dual-vector distributed beamforming: architecture overview and 28 GHz transceiver prototypes. IEEE Trans Circuits Syst I Regul Pap 2020;67(12):5496–509. link1

[ 8 ] Vook FW, Ghosh A, Thomas TA. MIMO and beamforming solutions for 5G technology. In: Proceedings of IEEE MTT-S International Microwave Symposium (IMS2014); 2014 Jun 1–6; Tampa, FL, USA; 2014. link1

[ 9 ] Ayach OE, Rajagopal S, Abu-Surra S, Pi Z, Heath RW. Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans Wirel Commun 2014;13 (3):1499–513. link1

[10] Wang Y, Wu R, Pang J, You D, Fadila AA, Saengchan R, et al. A 39 GHz 64- element phased-array transceiver with built-in phase and amplitude calibrations for large-array 5G NR in 65-nm CMOS. IEEE J Solid State Circuits 2020;55(5):1249–69. link1

[11] Pang J, Li Z, Kubozoe R, Luo X, Wu R, Wang Y, et al. A 28 GHz CMOS phasedarray beamformer utilizing neutralized bi-directional technique supporting dual-polarized MIMO for 5G NR. IEEE J Solid State Circuits 2020;55 (9):2371–86. link1

[12] Yin Y, Ustundag B, Kibaroglu K, Sayginer M, Rebeiz GM. Wideband 23.5–29.5 GHz phased arrays for multistandard 5G applications and carrier aggregation. IEEE Trans Microw Theory Tech 2021;69(1):235–47. link1

[13] Dunworth J, Ku BH, Ou YC, Lu D, Mouat P, Homayoun A, et al. 28 GHz phased array transceiver in 28 nm bulk CMOS for 5G prototype user equipment and base stations. In: Proceedings of IEEE/MTT-S International Microwave Symposium—IMS; 2018 Jun 10–15; Philadelphia, PA, USA;2018. link1

[14] Park H-C, Kang D, Lee SM, et al. A 39GHz-band CMOS 16-channel phased-array transceiver IC with a companion dual-stream IF transceiver IC for 5G NR basestation applications. In: Proceedings of IEEE/MTT-S International Microwave Symposium—IMS; 2018 Jun 10–15; Philadelphia, PA, USA; 2018. link1

[15] Yu Y, Zhu J, Zong Z, Tang P, Liu H, Zhao C, et al. A 21-to-41 GHz high-gain low noise amplifier with triple-coupled technique for multiband wireless applications. IEEE Trans Circuits Syst II Express Briefs 2021;68(6):1857–61. link1

[16] Bailleul PK. A new era in elemental digital beamforming for spaceborne communications phased arrays. Proc IEEE 2016;104(3):623–32. link1

[17] Ma S, Wu T, Zhang J, Ren JA. 5G wireless event-driven sensor chip for online power-line disturbances detecting network in 0.25 lm GaAs process. IEEE Trans Ind Electron 2021;68(6):5271–80. link1

[18] Zhu W, Wang J, Lv W, Zhang X, Liao B, Zhu Y, et al. A 24–28 GHz power and area efficient 4-element phased-array transceiver front-end with 21.1%/16.6% transmitter peak/OP1dB PAE supporting 2.4 Gb/s in 256-QAM for 5G communications. In: Proceedings of IEEE Radio Frequency Integrated Circuits Symposium (RFIC); 2020 Aug 4–6; Los Angeles, CA, USA; 2020. link1

[19] Yu C, Jing J, Shao H, Jiang ZH, Yan P, Zhu XW, et al. Full-angle digital predistortion of 5G millimeter-wave massive MIMO transmitters. IEEE Trans Microw Theory Tech 2019;67(7):2847–60. link1

[20] Hong Z, Schonherr S, Chauhan V, Floyd B. Free-space phased-array characterization and calibration using code-modulated embedded test. In: Proceedings of IEEE MTT-S International Microwave Symposium (IMS); 2019 Jun 2–7; Boston, MA, USA; 2019. link1

[21] Chan HC, Kuo YJ, Chen WY, Chang SF. A Ku-band CMOS build-in-self-test chip based on phasor-sum detection method for RF beamforming transceivers. In: Proceedings of IEEE MTT-S International Microwave Symposium (IMS); 2017 Jun 4–9; Honololu, HI, USA; 2017. link1

[22] Chen D, Zhang X, Zhang L, Chen L, Sun S, Liu Y, et al. A Ku-band 8-element phased array transmitter with built-in-self-test capability. In: Proceedings of IEEE/MTT-S International Microwave Symposium—IMS; 2018 Jun 10–15; Philadelphia, PA, USA; 2018. link1

[23] Sowlati T, Sarkar S, Perumana BG, Chan WL, Toda AP, Afshar B, et al. A 60 GHz 144-element phased-array transceiver for backhaul application. IEEE J Solid State Circuits 2018;53(12):3640–59. link1

[24] Nafe A, Kibaroglu K, Sayginer M, Rebeiz GM. An insitu self-test and selfcalibration technique utilizing antenna mutual coupling for 5G multi-beam TRX phased arrays. In: Proceedings of IEEE MTT-S International Microwave Symposium (IMS); 2910 Jun 2–7; Boston, MA, USA; 2019. link1

[25] Mondal S, Paramesh J. A reconfigurable 28/37 GHz MMSE adaptive hybridbeamforming receiver for carrier aggregation and multistandard MIMO communication. IEEE J Solid State Circuits 2019;54(5):1391–406. link1

[26] Mondal SL, Carley R, Paramesh J. A 28/37 GHz scalable, reconfigurable multilayer hybrid/digital MIMO transceiver for TDD/FDD and full-duplex communication. In: Proceedings of A 28/37GHz scalable, reconfigurable multi-layer hybrid/digital MIMO transceiver for TDD/FDD and full-duplex communication; 202 Feb 16–20; San Francisco, CA, USA; 2020. link1

[27] Natarajan A, Valdes-Garcia A, Sadhu B, Reynolds SK, Parker BD. W-band dualpolarization phased-array transceiver front-end in SiGe BiCMOS. IEEE J Solid State Circuits 2015;63(6):1989–2002. link1

[28] Aljuhani AH, Kanar T, Zihir S, Rebeiz GM. A scalable dual-polarized 256- element Ku-band phased-array SATCOM receiver with ±70 beam scanning. In: Proceedings of IEEE/MTT-S International Microwave Symposium—IMS; 2018 Jun 10–15; Philadelphia, PA, USA; 2018. link1

[29] Roh W, Seol JY, Park J, Lee B, Lee J, Kim Y, et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun Mag 2014;52 (2):106–13. link1

[30] Brady J, Hogan J, Sayeed A. Multi-beam MIMO prototype for real-time multiuser communication at 28 GHz. In: Proceedings of IEEE Globecom Workshops (GC Wkshps); 2016 Dec 4–8; Washington, DC, USA; 2016. link1

[31] Duarte VC, Prata JG, Ribeiro C, Nogueira RN, Winzer G, Zimmermann L, et al. Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver. In: Proceedings of Optical Fiber Communication Conference ; 2018 Mar 11–15; San Diego, CA, USA; 2018. link1

[32] Huang MY, Chen YW, Shiu RK, Wang H, Chang GK. A bi-directional multi-band, multi-beam mm-wave beamformer for 5G fiber wireless access networks. J Lightwave Technol 2021;39(4):1116–24. link1

[33] Binaie A, Ahasan S, Dascurcu A, Dastjerdi MB, Garg R, Johnson M, et al. A scalable 60 GHz 4-element MIMO transmitter with a frequency-domainmultiplexing single-wire interface and harmonic-rejection-based demultiplexing. In: Proceedings of IEEE Radio Frequency Integrated Circuits Symposium (RFIC); 2020 Aug 4–6; Los Angeles, CA, USA; 2020. link1

[34] Xu JX, Zhang XY. Single- and dual-band LTCC filtering switch with high isolation based on coupling control. IEEE Trans Ind Electron 2017;64(4):3137–46. link1

[35] Zhang Y. Antenna-in-package (AiP) technology. Engineering 2022;11:18–20. link1

[36] Kam DG, Liu D, Natarajan A, Reynolds S, Chen HC, Floyd BA. LTCC packages with embedded phased-array antennas for 60 GHz communications. IEEE Microw Wirel Compon Lett 2011;21(3):142–4. link1

[37] Chen Z, Jiang Z, Liu Z, Cheng Y, Zhang L, Cheng D, et al. A 256-QAM 39 GHz dual-channel transceiver chipset with LTCC package for 5G communication in 65 nm CMOS. In: Proceedings of IEEE/MTT-S International Microwave Symposium—IMS; 2018 Jun 10–15; Philadelphia, PA, USA; 2018. link1

[38] Chen P, Hong W, Kuai Z, Xu J, Wang H, Chen J, et al. A multibeam antenna based on substrate integrated waveguide technology for MIMO wireless communications. IEEE Trans Antennas Propag 2009;57(6):1813–21. link1

[39] Cheng YJ, Hong W, Wu K, Kuai ZQ, Yu C, Chen JX, et al. Substrate integrated waveguide (SIW) Rotman lens and its Ka-band multibeam array antenna applications. IEEE Trans Antennas Propag 2008;56(8):2504–13. link1

[40] Yu Y, Cao J, Zong Z, Tang P, Yi K, Zhao C, et al. A 68.5–90 GHz high-gain power amplifier with capacitive stability enhancement technique in 0.13 lm SiGe BiCMOS. IEEE Trans Microw Theory Tech 2020;68(12):5359–70. link1

[41] Razavi B. RF Microelectronics. 2nd ed. New Jersey: Prentice Hall Press; 2011. link1

[42] Wu R, Minami R, Tsukui Y, Kawai S, Seo Y, Sato S, et al. 64-QAM 60 GHz CMOS transceivers for IEEE 802.11ad/ay. IEEE J Solid State Circuits 2018;52 (11):2871–91. link1

[43] Chen Z, Liu H, Liu Z, Jiang Z, Yu Z, Wu Y, et al. A 62–85 GHz high linearity up conversion mixer with 18 GHz IF bandwidth. IEEE Microw Compon Lett 2019;29(3):219–21. link1

[44] Zhao C, Zeng X, Zhang L, Liu H, Yu Y, Wu Y, et al. A 37–40 GHz low-phase imbalance CMOS attenuator with tail-capacitor compensation technique. IEEE Trans Circuits Syst I Regul Pap 2020;67(10):3400–9. link1

[45] Yu Y, Liu H, Wu Y, Kang K. A 54.4–90 GHz low-noise amplifier in 65 nm CMOS. IEEE J Solid State Circuits 2017;52(11):2892–904. link1

[46] Zhang J, Liu H, Zhao C, Kang K. A 22.8-to-43.2 GHz tuning-less injection-locked frequency tripler using injection-current boosting with 76.4% locking range for multiband 5G applications. In: Proceedings of IEEE International SolidState Circuits Conference—(ISSCC); 2018 Feb 11–15; San Francisco, CA, USA; 2018. link1

[47] Lee YC, Park CS. A fully embedded 60 GHz novel BPF for LTCC system-inpackage applications. IEEE Trans Adv Packag 2006;29(4):804–9. link1

[48] Li X, Chen Z, Sun S, Zhao C, Liu H, Wu Y, et al. A 39 GHz MIMO transceiver based on dynamic multi-beam architecture for 5G communication with 150 meter coverage. In: Proceedings of IEEE/MTT-S International Microwave Symposium—IMS; 2018 Jun 10–15; Philadelphia, PA, USA; 2018. link1

[49] Johnson M, Dascuru A, Zhan K, Galioglu A, Adepu N, Jain S, et al. A 4-element 28 GHz millimeter-wave MIMO array with single-wire interface using code-domain multiplexing in 65 nm CMOS. In: Proceedings of IEEE Radio Frequency Integrated Circuits Symposium (RFIC); 2019 Jun 2–4; Boston, MA, USA; 2019. link1

[50] Kibaroglu K, Sayginer M, Nafe A, Rebeiz GM. A dual-polarized dual-beam 28 GHz beamformer chip demonstrating a 24 Gbps 64-QAM 2 link1

Related Research