Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 23, Issue 4 doi: 10.1016/j.eng.2022.05.019

Nutrient Sensing for the Future of Land-Farming Animal and Aquaculture Nutrition

a Key Laboratory of Mariculture (Ministry of Education of the People's Republic of China), Ocean University of China, Qingdao 266003, China
b Key Laboratory of Aquaculture Nutrition (Ministry of Agriculture and Rural Affairs), Ocean University of China, Qingdao 266003, China
c Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China

Received: 2022-03-02 Revised: 2022-05-25 Accepted: 2022-05-29 Available online: 2022-08-05

Next Previous

Abstract

Feeding is vital for animal growth and the maintenance of health. However, the underlying mechanisms that mediate dietary performance have long been a so-called black box. It is only during recent years that studies have demonstrated that nutrients act as signals that can be sensed by cells and organisms and that play vital roles in gene expression and metabolism. Multiple signaling pathways have been identified as being responsible for the sensing of discrete nutrients. While successes have been achieved in the exploitation of nutrient-sensing signals in drug discovery and disease control, applications based on the sensing and metabolic control of major nutrients (proteins, lipids, carbohydrates, etc.) in aquaculture and land-farmed animals remain in their infancy. We thus provide a tentative perspective on future research topics and applications of nutrient sensing in animal nutrition.

Figures

Fig. 1

References

[ 1 ] Silk DBA, Grimble GK, Rees RG. Protein digestion and amino acid and peptide absorption. Proc Nutr Soc 1985;44(1):63‒72. link1

[ 2 ] Efeyan A, Comb WC, Sabatini DM. Nutrient-sensing mechanisms and pathways. Nature 2015;517(7534):302‒10. link1

[ 3 ] Canosa LF, Bertucci JI. Nutrient regulation of somatic growth in teleost fish. The interaction between somatic growth, feeding and metabolism. Mol Cell Endocrinol 2020;518:111029. link1

[ 4 ] Chantranupong L, Wolfson RL, Sabatini DM. Nutrient-sensing mechanisms across evolution. Cell 2015;161(1):67‒83. link1

[ 5 ] Conde-Sieira M, Soengas JL. Nutrient sensing systems in fish: impact on food intake regulation and energy homeostasis. Front Neurosci 2017;10:603. link1

[ 6 ] Soengas JL. Integration of nutrient sensing in fish hypothalamus. Front Neurosci 2021;15:653928. link1

[ 7 ] Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 2010;40(2):310‒22. link1

[ 8 ] Ben-Sahra I, Manning BD. mTORC1 signaling and the metabolic control of cell growth. Curr Opin Cell Biol 2017;45:72‒82. link1

[ 9 ] Sabatini DM. Twenty-five years of mTOR: uncovering the link from nutrients to growth. Proc Natl Acad Sci USA 2017;114(45):11818‒25. link1

[10] Garami A, Zwartkruis FJZ, Nobukuni T, Joaquin M, Roccio M, Stocker H, et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 2003;11(6):1457‒66. link1

[11] Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 2012;150(6):1196‒208. link1

[12] Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL. Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 2008;10(8):935‒45. link1

[13] Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010;141(2):290‒303. link1

[14] Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008;320(5882):1496‒501. link1

[15] Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, et al. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 2015;347(6218):188‒94. link1

[16] Saxton RA, Chantranupong L, Knockenhauer KE, Schwartz TU, Sabatini DM. Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Nature 2016;536(7615):229‒33. link1

[17] Chantranupong L, Scaria SM, Saxton RA, Gygi MP, Shen K, Wyant GA, et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 2016;165(1):153‒64. link1

[18] Wyant GA, Abu-Remaileh M, Wolfson RL, Chen WW, Freinkman E, Danai LV, et al. mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient. Cell 2017;171(3):642‒654.e12. link1

[19] Chantranupong L, Wolfson RL, Orozco JM, Saxton RA, Scaria SM, Bar-Peled L, et al. The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep 2014;9(1):1‒8. link1

[20] Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM, Cantor JR, et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 2016;351(6268):43‒8. link1

[21] Chen J, Ou Y, Luo R, Wang J, Wang D, Guan J, et al. SAR1B senses leucine levels to regulate mTORC1 signalling. Nature 2021;596(7871):281‒4. link1

[22] Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK, et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 2012;149(2):410‒24. link1

[23] Gu X, Orozco JM, Saxton RA, Condon KJ, Liu GY, Krawczyk PA, et al. SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science 2017;358(6364):813‒8. link1

[24] Shen K, Sabatini DM. Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms. Proc Natl Acad Sci USA 2018;115(38):9545‒50. link1

[25] Rebsamen M, Pochini L, Stasyk T, de Araújo ME, Galluccio M, Kandasamy RK, et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 2015;519(7544):477‒81. link1

[26] Jung J, Genau HM, Behrends C. Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol Cell Biol 2015;35(14):2479‒94. link1

[27] Dong J, Qiu H, Garcia-Barrio M, Anderson J, Hinnebusch AG. Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol Cell 2000;6(2):269‒79. link1

[28] Berlanga JJ, Santoyo J, De Haro C. Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2α kinase. Eur J Biochem 1999;265(2):754‒62. link1

[29] Gazzaneo MC, Orellana RA, Suryawan A, Tuckow AP, Kimball SR, Wilson FA, et al. Differential regulation of protein synthesis and mTOR signaling in skeletal muscle and visceral tissues of neonatal pigs after a meal. Pediatr Res 2011;70(3):253‒60. link1

[30] Samovski D, Sun J, Pietka T, Gross RW, Eckel RH, Su X, et al. Regulation of AMPK activation by CD36 links fatty acid uptake to β-oxidation. Diabetes 2015;64(2):353‒9. link1

[31] Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. Free fatty acid receptors in health and disease. Physiol Rev 2020;100(1):171‒210. link1

[32] Hassing HA, Fares S, Larsen O, Pad H, Hauge M, Jones RM, et al. Biased signaling of lipids and allosteric actions of synthetic molecules for GPR119. Biochem Pharmacol 2016;119:66‒75. link1

[33] Moss CE, Glass LL, Diakogiannaki E, Pais R, Lenaghan C, Smith DM, et al. Lipid derivatives activate GPR119 and trigger GLP-1 secretion in primary murine L-cells. Peptides 2016;77:16‒20. link1

[34] Mello T. Nuclear receptors in the regulation of lipid metabolism. Curr Cardiovasc Risk Rep 2010;4(2):142‒9. link1

[35] Zhou J, Febbraio M, Wada T, Zhai Y, Kuruba R, He J, et al. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology 2008;134(2):556‒67. link1

[36] Gimpl G, Burger K, Fahrenholz F. A closer look at the cholesterol sensor. Trends Biochem Sci 2002;27(12):596‒9. link1

[37] Zammit VA, Arduini A. The AMPK-malonyl-CoA-CPT1 axis in the control of hypothalamic neuronal function. Cell Metab 2008;8(3):175. link1

[38] Herman MA, Kahn BB. Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. J Clin Invest 2006;116(7):1767‒75. link1

[39] Printz RL, Magnuson MA, Granner DK. Mammalian glucokinase. Annu Rev Nutr 1993;13(1):463‒96. link1

[40] Oosterveer MH, Schoonjans K. Hepatic glucose sensing and integrative pathways in the liver. Cell Mol Life Sci 2014;71(8):1453‒67. link1

[41] Thorens B. GLUT2, glucose sensing and glucose homeostasis. Diabetologia 2015;58(2):221‒32. link1

[42] Röder PV, Geillinger KE, Zietek TS, Thorens B, Koepsell H, Daniel H. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS One 2014;9(2):e89977. link1

[43] Pagliarini DJ, Wiley SE, Kimple ME, Dixon JR, Kelly P, Worby CA, et al. Involvement of a mitochondrial phosphatase in the regulation of ATP production and insulin secretion in pancreatic β cells. Mol Cell 2005;19(2):197‒207. link1

[44] Duca FA, Waise TMZ, Peppler WT, Lam TKT. The metabolic impact of small intestinal nutrient sensing. Nat Commun 2021;12(1):903. link1

[45] Raka F, Farr S, Kelly J, Stoianov A, Adeli K. Metabolic control via nutrient-sensing mechanisms: role of taste receptors and the gut-brain neuroendocrine axis. Am J Physiol Endocrinol Metab 2019;317(4):E559‒72. link1

[46] Zhang CS, Hawley SA, Zong Y, Li M, Wang Z, Gray A, et al. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 2017;548(7665):112‒6. link1

[47] Efeyan A, Zoncu R, Chang S, Gumper I, Snitkin H, Wolfson RL, et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 2013;493(7434):679‒83. link1

[48] Efeyan A, Zoncu R, Sabatini DM. Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med 2012;18(9):524‒33. link1

[49] Deprince A, Haas JT, Staels B. Dysregulated lipid metabolism links NAFLD to cardiovascular disease. Mol Metab 2020;42:101092. link1

[50] Wang S, Wu J, Nie SD, Bereczki E, Pei JJ. Dysregulated mTOR-dependent signaling in neurodegeneration or carcinogenesis: implication for Alzheimer’s disease and brain tumors. J Alzheimers Dis 2013;37(3):495‒505. link1

[51] Zhang Q, Duplany A, Moncollin V, Mouradian S, Goillot E, Mazelin L, et al. Lack of muscle mTOR kinase activity causes early onset myopathy and compromises whole-body homeostasis. J Cachexia Sarcopenia Muscle 2019;10(1):35‒53. link1

[52] Waickman AT, Powell JD. mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol Rev 2012;249(1):43‒58. link1

[53] Powell JD, Pollizzi KN, Heikamp EB, Horton MR. Regulation of immune responses by mTOR. Annu Rev Immunol 2012;30(1):39‒68. link1

[54] Hartman NW, Lin TV, Zhang L, Paquelet GE, Feliciano DM, Bordey A. mTORC1 targets the translational repressor 4E-BP2, but not S6 kinase 1/2, to regulate neural stem cell self-renewal in vivo. Cell Rep 2013;5(2):433‒44. link1

[55] Hu JK, Du W, Shelton SJ, Oldham MC, DiPersio CM, Klein OD. An FAK-YAP-mTOR signaling axis regulates stem cell-based tissue renewal in mice. Cell Stem Cell 2017;21(1):91‒106.e6. link1

[56] Lee SY, Tsai WC, Lin JC, Ahmetaj-Shala B, Huang SF, Chang WL, et al. Astragaloside II promotes intestinal epithelial repair by enhancing L-arginine uptake and activating the mTOR pathway. Sci Rep 2017;7(1). link1

[57] Ye J, Yuan K, Dai W, Sun K, Li G, Tan M, et al. The mTORC1 signaling modulated by intracellular C3 activation in Paneth cells promotes intestinal epithelial regeneration during acute injury. Int Immunopharmacol 2019;67:54‒61. link1

[58] Yang H, Xiong X, Li T, Yin Y. Ethanolamine enhances the proliferation of intestinal epithelial cells via the mTOR signaling pathway and mitochondrial function. In Vitro Cell Dev Biol Anim 2016;52(5):562‒7. link1

[59] Roura E, Fu M. Taste, nutrient sensing and feed intake in pigs (130 years of research: then, now and future). Anim Feed Sci Technol 2017;233:3‒12. link1

[60] Tesseraud S, Bigot K, Taouis M. Amino acid availability regulates S6K1 and protein synthesis in avian insulin-insensitive QM7 myoblasts. FEBS Lett 2003;540(1‒3):176‒80.

[61] Kim J, Song G, Wu G, Gao H, Johnson GA, Bazer FW. Arginine, leucine, and glutamine stimulate proliferation of porcine trophectoderm cells through the MTOR‒RPS6K‒RPS6‒EIF4EBP1 signal transduction pathway. Biol Reprod 2013;88(5):113. link1

[62] Mu Y, Zheng D, Wang C, Yu W, Zhang X. RagD regulates amino acid mediated-casein synthesis and cell proliferation via mTOR signalling in cow mammary epithelial cells. J Dairy Res 2018;85(2):204‒11. link1

[63] Liang Y, Cardoso FF, Parys C, Cardoso FC, Loor JJ. Branched-chain amino acid supplementation alters the abundance of mechanistic target of rapamycin and insulin signaling proteins in subcutaneous adipose explants from lactating holstein cows. Animals (Basel) 2021;11(9):2714. link1

[64] Voortman T, Hendriks HFJ, Witkamp RF, Wortelboer HM. Effects of long- and short-chain fatty acids on the release of gastrointestinal hormones using an ex vivo porcine intestinal tissue model. J Agric Food Chem 2012;60(36):9035‒42. link1

[65] Guo J, Shu G, Zhou L, Zhu X, Liao W, Wang S, et al. Selective transport of long-chain fatty acids by FAT/CD36 in skeletal muscle of broilers. Animal 2013;7(3):422‒9. link1

[66] Lin H, Li B, Liu M, Zhou H, He K, Fan H. Nonstructural protein 6 of porcine epidemic diarrhea virus induces autophagy to promote viral replication via the PI3K/Akt/mTOR axis. Vet Microbiol 2020;244:108684. link1

[67] Mao X, Liu M, Tang J, Chen H, Chen D, Yu B, et al. Dietary leucine supplementation improves the mucin production in the jejunal mucosa of the weaned pigs challenged by porcine rotavirus. PLoS One 2015;10(9):e0137380. link1

[68] Xu X, Wang X, Wu H, Zhu H, Liu C, Hou Y, et al. Glycine relieves intestinal injury by maintaining mTOR Signaling and suppressing AMPK, TLR4, and NOD signaling in weaned piglets after lipopolysaccharide challenge. Int J Mol Sci 2018;19(7):1980. link1

[69] Qin Q, Xu X, Wang X, Wu H, Zhu H, Hou Y, et al. Glutamate alleviates intestinal injury, maintains mTOR and suppresses TLR4 and NOD signaling pathways in weanling pigs challenged with lipopolysaccharide. Sci Rep 2018;8(1). link1

[70] Suryawan A, Rudar M, Fiorotto ML, Davis TA. Differential regulation of mTORC1 activation by leucine and β-hydroxy-β-methylbutyrate in skeletal muscle of neonatal pigs. J Appl Physiol(1985) 2020;128(2):286‒95.

[71] Zheng L, Wei H, Cheng C, Xiang Q, Pang J, Peng J. Supplementation of branched-chain amino acids to a reduced-protein diet improves growth performance in piglets: involvement of increased feed intake and direct muscle growth-promoting effect. Br J Nutr 2016;115(12):2236‒45. link1

[72] Moran AW, Al-Rammahi MA, Arora DK, Batchelor DJ, Coulter EA, Daly K, et al. Expression of Na+/glucose co-transporter 1 (SGLT1) is enhanced by supplementation of the diet of weaning piglets with artificial sweeteners. Br J Nutr 2010;104(5):637‒46. link1

[73] Niknafs S, Roura E. Nutrient sensing, taste and feed intake in avian species. Nutr Res Rev 2018;31(2):256‒66. link1

[74] Luciani A, Stagi M. How mTORC1 makes sense of nutrients. Kidney Int 2021;99(2):295‒8. link1

[75] Wanders D, Stone KP, Forney LA, Cortez CC, Dille KN, Simon J, et al. Role of GCN2-independent signaling through a noncanonical PERK/NRF2 pathway in the physiological responses to dietary methionine restriction. Diabetes 2016;65(6):1499‒510. link1

[76] Lu D, Ma Q, Wang J, Li L, Han S, Limbu S, et al. Fasting enhances cold resistance in fish through stimulating lipid catabolism and autophagy. J Physiol 2019;597(6):1585‒603. link1

[77] Ning L, He A, Lu D, Li J, Qiao F, Li D, et al. Nutritional background changes the hypolipidemic effects of fenofibrate in Nile tilapia (Oreochromis niloticus). Sci Rep 2017;7(1). link1

[78] Soengas JL. Contribution of glucose- and fatty acid sensing systems to the regulation of food intake in fish. A review. Gen Comp Endocrinol 2014;205:36‒48. link1

[79] Dai W, Panserat S, Mennigen JA, Terrier F, Dias K, Seiliez I, et al. Post-prandial regulation of hepatic glucokinase and lipogenesis requires the activation of TORC1 signalling in rainbow trout (Oncorhynchus mykiss). J Exp Biol 2013;216(23):4483‒92.

[80] Ahmad I, Ahmed I, Fatma S, Peres H. Role of branched‐chain amino acids on growth, physiology and metabolism of different fish species: a review. Aquacult Nutr 2021;27(5):1270‒89. link1

[81] Liao K, Meng R, Ran Z, Cheng G, Wang Y, Xu J, et al. Short‐term starvation in silver pomfret (Pampus argenteus): molecular effects on lipid mobilization and utilization. Aquacult Res 2017;48(9):4874‒85. link1

[82] Tian J, Liu W, Gao W, Wu F, Yu L, Lu X, et al. Molecular cloning and gene/protein expression of FAT/CD36 from grass carp (Ctenopharyngodon idella) and the regulation of its expression by dietary energy. Fish Physiol Biochem 2017;43(3):875‒88. link1

[83] Torstensen BE, Nanton DA, Olsvik PA, Sundvold H, Stubhaug I. Gene expression of fatty acid‐binding proteins, fatty acid transport proteins (CD36 and FATP) and beta‐oxidation‐related genes in Atlantic salmon (Salmo salar L.) fed fish oil or vegetable oil. Aquacult Nutr 2009;15(4):440‒51. link1

[84] Hao T, Li J, Liu Q, Cui K, Chen Q, Xu D, et al. Fatty acid translocase (FAT/CD36) in large yellow croaker (Larimichthys crocea): molecular cloning, characterization and the response to dietary fatty acids. Aquaculture 2020;528:735557. link1

[85] Liu Y, Han SL, Luo Y, Li LY, Chen LQ, Zhang ML, et al. Impaired peroxisomal fat oxidation induces hepatic lipid accumulation and oxidative damage in Nile tilapia. Fish Physiol Biochem 2020;46(4):1229‒42. link1

[86] Kamalam BS, Medale F, Panserat S. Utilisation of dietary carbohydrates in farmed fishes: new insights on influencing factors, biological limitations and future strategies. Aquaculture 2017;467:3‒27. link1

[87] Xu C, Liu W, Zhang D, Cao X, Shi H, Li X. Interactions between dietary carbohydrate and metformin: implications on energy sensing, insulin signaling pathway, glycolipid metabolism and glucose tolerance in blunt snout bream Megalobrama amblycephala. Aquaculture 2018;483:183‒95. link1

[88] Shi H, Xu C, Liu M, Wang B, Liu W, Chen D, et al. Resveratrol improves the energy sensing and glycolipid metabolism of blunt snout bream Megalobrama amblycephala fed high-carbohydrate diets by activating the AMPK‒SIRT1‒PGC-1α network. Front Physiol 2018;9:1258. link1

[89] Luthada-Raswiswi R, Mukaratirwa S, O’Brien G. Animal protein sources as a substitute for fishmeal in aquaculture diets: a systematic review and meta-analysis. Appl Sci (Basel) 2021;11(9):3854. link1

[90] Jannathulla R, Rajaram V, Kalanjiam R, Ambasankar K, Muralidhar M, Dayal JS. Fishmeal availability in the scenarios of climate change: inevitability of fishmeal replacement in aquafeeds and approaches for the utilization of plant protein sources. Aquacult Res 2019;50(12):3493‒506. link1

[91] Song F, Xu D, Mai K, Zhou H, Xu W, He G. Comparative study on the cellular and systemic nutrient sensing and intermediary metabolism after partial replacement of fishmeal by meat and bone meal in the diet of turbot (Scophthalmus maximus L.). PLoS One 2016;11(11):e0165708. link1

[92] Xu D, He G, Mai K, Zhou H, Xu W, Song F. Postprandial nutrient-sensing and metabolic responses after partial dietary fishmeal replacement by soyabean meal in turbot (Scophthalmus maximus L.). Br J Nutr 2016;115(3):379‒88. link1

[93] Jiang H, Bian F, Zhou H, Wang X, Wang K, Mai K, et al. Nutrient sensing and metabolic changes after methionine deprivation in primary muscle cells of turbot (Scophthalmus maximus L.). J Nutr Biochem 2017;50:74‒82. link1

[94] Bian F, Jiang H, Man M, Mai K, Zhou H, Xu W, et al. Dietary gossypol suppressed postprandial TOR signaling and elevated ER stress pathways in turbot (Scophthalmus maximus L.). Am J Physiol Endocrinol Metab 2017;312(1):E37‒47. link1

[95] Tian J, Wang K, Wang X, Wen H, Zhou H, Liu C, et al. Soybean saponin modulates nutrient sensing pathways and metabolism in zebrafish. Gen Comp Endocrinol 2018;257:246‒54. link1

[96] Wang K, Liu C, Hou Y, Zhou H, Wang X, Mai K, et al. Differential apoptotic and mitogenic effects of lectins in zebrafish. Front Endocrinol 2019;10:356. link1

[97] Wang N, Zhang X, Liu C, Wang X, Zhou H, Mai K, et al. Fine-tuning of postprandial responses via feeding frequency and leucine supplementation affects dietary performance in turbot (Scophthalmus maximus L.). J Nutr 2021;151(10):2957‒66. link1

[98] Caballero-Solares A, Viegas I, Salgado MC, Siles AM, Sáez A, Metón I, et al. Diets supplemented with glutamate or glutamine improve protein retention and modulate gene expression of key enzymes of hepatic metabolism in gilthead seabream (Sparus aurata) juveniles. Aquaculture 2015;444:79‒87. link1

[99] Jiang H, Zhou H, Liu C, Wang X, Mai K, He G. Effects of phosphatidic acid on growth and antioxidant capacity in juvenile turbot, Scophthalmus maxius L., fed with high plant protein-based diets. J World Aquacult Soc 2021;52(4):947‒60. link1

[100] Green CL, Lamming DW, Fontana L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat Rev Mol Cell Biol 2022;23(1):56‒73. link1

[101] Kioussis B, Tuttle CSL, Heard DS, Kennedy BK, Lautenschlager NT, Maier AB. Targeting impaired nutrient sensing with repurposed therapeutics to prevent or treat age-related cognitive decline and dementia: a systematic review. Ageing Res Rev 2021;67:101302. link1

[102] Garlick PJ, McNurlan MA, Preedy VR. A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanine. Biochem J 1980;192(2):719‒23. link1

[103] Dai Z, Locasale JW. Understanding metabolism with flux analysis: from theory to application. Metab Eng 2017;43(Pt B):94‒102. link1

[104] Ravasco P. Nutrition in cancer patients. J Clin Med 2019;8(8):1211. link1

[105] Power R, Nolan JM, Prado-Cabrero A, Coen R, Roche W, Power T, et al. Targeted nutritional intervention for patients with mild cognitive impairment: the cognitive impAiRmEnt study (CARES) trial 1. J Pers Med 2020;10(2):43. link1

[106] Ravancic ME, Obradovic V. Usage of nutritional supplements for individuals with Down syndrome. Prog Nutr 2021;23(3):e2021092.

[107] Nasimi N, Dabbaghmanesh MH, Sohrabi Z. Nutritional status and body fat mass: determinants of sarcopenia in community-dwelling older adults. Exp Gerontol 2019;122:67‒73. link1

[108] Manifava M, Smith M, Rotondo S, Walker S, Niewczas I, Zoncu R, et al. Dynamics of mTORC1 activation in response to amino acids. eLife 2016;5:e19960. link1

[109] Michie C, Andonovic I, Davison C, Hamilton A, Tachtatzis C, Jonsson N, et al. The Internet of Things enhancing animal welfare and farm operational efficiency. J Dairy Res 2020;87(S1):20‒7. link1

[110] González LA, Kyriazakis I, Tedeschi LO. Review: precision nutrition of ruminants: approaches, challenges and potential gains. Animal 2018;12(Suppl 2):S246‒61. link1

Related Research