Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 19, Issue 12 doi: 10.1016/j.eng.2022.05.020

Ether-/Ester-/Fluorine-Rich Binding Emulsion Formula for Lithium-Ion Batteries

a China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610066, China
b Sichuan Sanlian New Material Co., Ltd., Chengdu 610041, China
c Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
d School of Metallurgy and Environment, Central South University, Changsha 410083, China

Received: 2020-03-31 Revised: 2022-05-10 Accepted: 2022-05-20 Available online: 2022-10-18

Next Previous

Abstract

Practical application of a Si anode in a high-energy-density battery cannot be achieved due to the huge volume expansion of these anodes. Researchers have focused on adding binders to the anode to restrict volume expansion in order to address this issue, as the hydrogen bonds and mechanical properties of binders can be used to enhance adhesion and accommodate the volume changes of a Si anode. Herein, we comprehensively consider binders’ hydrogen bonds, mechanical properties, stability, and compatibility with the electrolyte solution, and design an ether-/ester-/fluorine-rich composite polymer, P(TFEMA-co-IBVE). The proposed binder formula possesses outstanding stability, adhesion, and mechanical strength; moreover, it can accommodate the dramatic volume changes of a Si electrode and exhibits excellent electrochemical performance, achieving a high areal capacity of about 5.4 mA∙h∙cm−2. This novel polymer design may be applied to other electrode materials in the next generation of lithium-ion batteries.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

References

[ 1 ] Hu L, Wu H, La Mantia F, Yang Y, Cui Y. Thin, flexible secondary Li-ion paper batteries. ACS Nano 2010;4(10):5843–8. link1

[ 2 ] Li M, Lu J, Chen Z, Amine K. 30 years of lithium-ion batteries. Adv Mater 2018;30(33):1800561. link1

[ 3 ] Liu T, Zhang Y, Jiang Z, Zeng X, Ji J, Li Z, et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy Environ Sci 2019;12(5):1512–33. link1

[ 4 ] Zeng X, Gao X, Li G, Sun M, Lin Z, Ling M, et al. Conductive molybdenum carbide as the polysulfide reservoir for lithium–sulfur batteries. J Mater Chem A 2018;6(35):17142–7. link1

[ 5 ] Shen Y, Zhang J, Pu Y, Wang H, Wang B, Qian J, et al. Effective chemical prelithiation strategy for building a silicon/sulfur Li-ion battery. ACS Energy Lett 2019;4(7):1717–24. link1

[ 6 ] Song Z, Zhang G, Deng X, Zou K, Xiao X, Momen R, et al. Ultra-low-dose premetallation strategy served for commercial metal-ion capacitors. Nano-Micro Lett 2022;14(1):53. link1

[ 7 ] Erk C, Brezesinski T, Sommer H, Schneider R, Janek J. Toward silicon anodes for next-generation lithium ion batteries: a comparative performance study of various polymer binders and silicon nanopowders. ACS Appl Mater Interfaces 2013;5(15):7299–307. link1

[ 8 ] Zhao Y, Wang J, He Q, Shi J, Zhang Z, Men X, et al. Li-ions transport promoting and highly stable solid–electrolyte interface on Si in multilayer Si/C through thickness control. ACS Nano 2019;13(5):5602–10. link1

[ 9 ] Jin Y, Zhu B, Lu Z, Liu N, Zhu J. Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv Energy Mater 2017; 7(23):1700715. link1

[10] Kim H, Han B, Choo J, Cho J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew Chem Int Ed Engl 2008;47(52):10151–4. link1

[11] Devic T, Lestriez B, Roué L. Silicon electrodes for Li-ion batteries. Addressing the challenges through coordination chemistry. ACS Energy Lett 2019;4(2): 550–7. link1

[12] Luo W, Chen X, Xia Y, Chen M, Wang L, Wang Q, et al. Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv Energy Mater 2017;7(24):1701083. link1

[13] Ling M, Zhao H, Xiao X, Shi F, Wu M, Qiu J, et al. Low cost and environmentally benign crack-blocking structures for long life and high power Si electrodes in lithium ion batteries. J Mater Chem A 2015;3(5):2036–42. link1

[14] Jia H, Zheng J, Song J, Luo L, Yi R, Estevez L, et al. A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy 2018;50:589–97. link1

[15] Xiao Q, Gu M, Yang H, Li B, Zhang C, Liu Y, et al. Inward lithium-ion breathing of hierarchically porous silicon anodes. Nat Commun 2015;6(1):8844. link1

[16] Han X, Zhang Z, Chen S, Yang Y. Low temperature growth of graphitic carbon on porous silicon for high-capacity lithium energy storage. J Power Sources 2020;463:228245. link1

[17] Dou F, Weng Y, Chen G, Shi L, Liu H, Zhang D. Volume expansion restriction effects of thick TiO2/C hybrid coatings on micro-sized SiOx anode materials. Chem Eng J 2020;387:124106. link1

[18] Han J, Chen G, Yan T, Liu H, Shi L, An Z, et al. Creating graphene-like carbon layers on SiO anodes via a layer-by-layer strategy for lithium-ion battery. Chem Eng J 2018;347:273–9. link1

[19] Guo S, Hu X, Hou Y, Wen Z. Tunable synthesis of yolk–shell porous silicon@carbon for optimizing Si/C-based anode of lithium-ion batteries. ACS Appl Mater Interfaces 2017;9(48):42084–92. link1

[20] Tong L, Wang P, Fang W, Guo X, Bao W, Yang Y, et al. Interface engineering of silicon/carbon thin-film anodes for high-rate lithium-ion batteries. ACS Appl Mater Interfaces 2020;12(26):29242–52. link1

[21] Chen H, Ling M, Hencz L, Ling HY, Li G, Lin Z, et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energystorage devices. Chem Rev 2018;118(18):8936–82. link1

[22] Cao PF, Yang G, Li B, Zhang Y, Zhao S, Zhang S, et al. Rational design of a multifunctional binder for high-capacity silicon-based anodes. ACS Energy Lett 2019;4(5):1171–80. link1

[23] Yuca N, Zhao H, Song X, Dogdu MF, Yuan W, Fu Y, et al. A systematic investigation of polymer binder flexibility on the electrode performance of lithium-ion batteries. ACS Appl Mater Interfaces 2014;6(19):17111–8. link1

[24] Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 2011;334(6052):75–9. link1

[25] Ling M, Qiu J, Li S, Yan C, Kiefel MJ, Liu G, et al. Multifunctional SA-PProDOT binder for lithium ion batteries. Nano Lett 2015;15(7):4440–7. link1

[26] Choi S, Kwon TW, Coskun A, Choi JW. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 2017;357(6348):279–83. link1

[27] Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner CF, et al. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater Interfaces 2010;2(11):3004–10. link1

[28] Guo R, Zhang S, Ying H, Yang W, Wang J, Han WQ. New, effective, and low-cost dual-functional binder for porous silicon anodes in lithium-ion batteries. ACS Appl Mater Interfaces 2019;11(15):14051–8. link1

[29] Munao D, van Erven JWM, Valvo M, Garcia-Tamayo E, Kelder EM. Role of the binder on the failure mechanism of Si nano-composite electrodes for Li-ion batteries. J Power Sources 2011;196(16):6695–702. link1

[30] Ling M, Xu Y, Zhao H, Gu X, Qiu J, Li S, et al. Dual-functional gum arabic binder for silicon anodes in lithium ion batteries. Nano Energy 2015;12:178–85. link1

[31] Song J, Zhou M, Yi R, Xu T, Gordin ML, Tang D, et al. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv Funct Mater 2014;24(37):5904–10. link1

[32] Yu X, Yang H, Meng H, Sun Y, Zheng J, Ma D, et al. Three-dimensional conductive gel network as an effective binder for high-performance Si electrodes in lithium-ion batteries. ACS Appl Mater Interfaces 2015;7 (29):15961–7. link1

[33] Liu T, Chu Q, Yan C, Zhang S, Lin Z, Lu J. Interweaving 3D network binder for high-areal-capacity Si anode through combined hard and soft polymers. Adv Energy Mater 2019;9(3):1802645. link1

[34] Ling M, Liu M, Zheng T, Zhang T, Liu G. Investigating the doping mechanism of pyrene based methacrylate functional conductive binder in silicon anodes for lithium-ion batteries. J Electrochem Soc 2017;164(4):A545–8. link1

[35] Wei D, Mao J, Zheng Z, Fang J, Luo Y, Gao X. Achieving a high loading Si anode via employing a triblock copolymer elastomer binder, metal nanowires, and a laminated conductive structure. J Mater Chem A 2018;6(42):20982–91. link1

[36] Xu Z, Yang J, Zhang T, Nuli Y, Wang J, Hirano S. Silicon microparticle anodes with self-healing multiple network binder. Joule 2018;2(5):950–61. link1

[37] Wei L, Chen C, Hou Z, Wei H. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries. Sci Rep 2016;6(1):19583. link1

[38] Cai Y, Li Y, Jin B, Ali A, Ling M, Cheng D, et al. Dual cross-linked fluorinated binder network for high-performance silicon and silicon oxide based anodes in lithium-ion batteries. ACS Appl Mater Interfaces 2019;11(50):46800–7. link1

[39] Wang KL, Chen KT, Yi YH, Hung YH, Tuan HY, Horie M. High-performance lithium ion batteries combining submicron silicon and thiophene– terephthalic acid conjugated polymer binders. ACS Sustain Chem Eng 2020;8(2):1043–9. link1

[40] Mandal P, Stokes K, Hernández G, Brandell D, Mindemark J. Influence of binder crystallinity on the performance of Si electrodes with poly(vinyl alcohol) Binders. ACS Appl Energy Mater 2021;4(4):3008–16. link1

[41] Hu S, Cai Z, Huang T, Zhang H, Yu A. A modified natural polysaccharide as a high-performance binder for silicon anodes in lithium-ion batteries. ACS Appl Mater Interfaces 2019;11(4):4311–7. link1

[42] Tang R, Ma L, Zhang Yu, Zheng X, Shi Y, Zeng X, et al. A flexible and conductive binder with strong adhesion for high performance silicon-based lithium-ion battery anode. ChemElectroChem 2020;7(9):1992–2000. link1

[43] Lee HA, Shin M, Kim J, Choi JW, Lee H. Designing adaptive binders for microenvironment settings of silicon anode particles. Adv Mater 2021;33 (13):2007460. link1

[44] Iyengar DR, Perutz SM, Dai CA, Ober CK, Kramer EJ. Surface segregation studies of fluorine-containing diblock copolymers. Macromolecules 1996;29 (4):1229–34. link1

[45] Shimomoto H, Fukami D, Irita T, Katsukawa KI, Nagai T, Kanaoka S, et al. Synthesis of fluorine-containing star-shaped poly(vinyl ether)s via armlinking reactions in living cationic polymerization. J Polym Sci A 2012;50 (8):1547–55. link1

[46] Kahveci MU, Mangold C, Frey H, Yagci Y. Graft copolymers with complex polyether structures: poly(ethylene oxide)-graft-poly(isobutyl vinyl ether) by combination of living anionic and photoinduced cationic graft polymerization. Macromol Chem Phys 2014;215(6):566–71. link1

[47] Hashimoto T, Nakamura T, Tanahashi S, Kodaira T. Gel formation in cationic polymerization of divinyl ethers. III. Effect of oligooxyethylene chain versus oligomethylene chain as central spacer units. J Polym Sci A 2004;42 (15):3729–38. link1

[48] Yonezawa N, Mori S, Miyata S, Ueha-Anyashiki Y, Maeyama K. Synthesis of aromatic poly(ether ketone)s having adhesion property to steel surface. React Funct Polym 2002;53(1):11–7. link1

[49] Devrim ES, Kahveci MU, Tasdelen MA, Ito K, Yagci Y. Synthesis of poly(isobutyl vinyl ether)-graft-poly(ethylene oxide) co-polymer with pendant methacrylate functionality and its photo-curing behavior. Des Monomers Polym 2009;12(3):265–72. link1

[50] Tran B, Oladeji IO, Zou J, Chai G, Zhai L. Adhesive poly(PEGMA-co-MMA-coIBVE) copolymer electrolyte. Solid State Ion 2013;232:37–43. link1

[51] Oda Y, Horinouchi A, Kawaguchi D, Matsuno H, Kanaoka S, Aoshima S, et al. Effect of side-chain carbonyl groups on the interface of vinyl polymers with water. Langmuir 2014;30(5):1215–9. link1

[52] Liu X, Wang CG, Goto A. Polymer dispersity control by organocatalyzed living radical polymerization. Angew Chem Int Ed Engl 2019;58(17):5598–603. link1

[53] Kasinathan R, Marinaro M, Axmann P, Wohlfahrt-Mehrens M. Influence of the molecular weight of poly-acrylic acid binder on performance of Sialloy/graphite composite anodes for lithium-ion batteries. Energy Technol 2018;6(11):2256–63. link1

[54] Hu B, Shkrob IA, Zhang S, Zhang L, Zhang J, Li Y, et al. The existence of optimal molecular weight for poly(acrylic acid) binders in silicon/graphite composite anode for lithium-ion batteries. J Power Sources 2018;378:671–6. link1

[55] Liu D, Xie Y, Xu R, Wang Y, He L, Yan X, et al., inventors; Dongguan Amperex Tech Ltd., Ningde Amperex Technology Ltd., assignees. Qualitative analysis method for adhesive property of adhesive. China patent CN102323249A. 2012 Jan 18. Chinese.

Related Research