Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 20, Issue 1 doi: 10.1016/j.eng.2022.06.013

Changes in Lipoprotein Lipase in the Heart Following Diabetes Onset

Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada

Received: 2022-01-14 Revised: 2022-06-23 Accepted: 2022-06-30 Available online: 2022-07-26

Next Previous

Abstract

Due to its constant pumping and contraction, the heart requires a substantial amount of energy, with fatty acids (FAs) providing a major part of its adenosine triphosphate (ATP). However, the heart is incapable of making this substrate and attains its FAs from multiple sources, including the action of lipoprotein lipase (LPL). LPL is produced in cardiomyocytes and subsequently secreted to its heparan sulfate proteoglycan (HSPG) binding sites on the plasma membrane. To then move LPL to the endothelial cell (EC) lumen, glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) attaches to interstitial LPL and transfers it to the vascular lumen, where the LPL is ready to perform its function of breaking down circulating triglycerides (TG) into FAs. The endo-β-glucuronidase heparanase (Hpa) is unique in that it is the only known mammalian enzyme to cleave heparan sulfate (HS), thereby promoting the abovementioned release of LPL from the cardiomyocyte HSPG. In diabetes, it has been suggested that changes in how the heart generates energy are responsible for the development of diabetic cardiomyopathy (DCM). Following moderate diabetes, with the reduction in glucose utilization, the heart increases its LPL activity at the vascular lumen due to an increase in Hpa action. Although this adaptation might be beneficial to compensate for the underutilization of glucose by the heart, it is toxic over the long term, as harmful lipid metabolite accumulation, along with augmented FA oxidation and thus oxidative stress, leads to cell death. This coincides with the loss of a cardioprotective growth factor—namely, vascular endothelial growth factor B (VEGFB). This review discusses interconnections between Hpa, LPL, and VEGFB and their potential implications in DCM. Given that mechanism-based therapeutic care for DCM is unavailable, understanding the pathology of this cardiomyopathy, along with the contribution of LPL, will help us advance its clinical management.

Figures

Fig. 1

References

[ 1 ] Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev 2013;93(1):137–88. link1

[ 2 ] Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414(6865):813–20. link1

[ 3 ] An D, Rodrigues B. Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2006;291(4): H1489–506. link1

[ 4 ] Rodrigues B, McNeill JH. The diabetic heart: metabolic causes for the development of a cardiomyopathy. Cardiovasc Res 1992;26(10):913–22. link1

[ 5 ] Seferovic PM, Paulus WJ. Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur Heart J 2015;36 (27):1718–27. link1

[ 6 ] Bugger H, Abel ED. Rodent models of diabetic cardiomyopathy. Dis Model Mech 2009;2(9–10):454–66. link1

[ 7 ] Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 2018;122(4):624–38. link1

[ 8 ] Stanley WC, Lopaschuk GD, McCormack JG. Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc Res 1997;34(1):25–33. link1

[ 9 ] Kim MS, Wang Y, Rodrigues B. Lipoprotein lipase mediated fatty acid delivery and its impact in diabetic cardiomyopathy. Biochim Biophys Acta 2012;1821 (5):800–8. link1

[10] Voshol PJ, Jong MC, Dahlmans VE, Kratky D, Levak-Frank S, Zechner R, et al. In muscle-specific lipoprotein lipase-overexpressing mice, muscle triglyceride content is increased without inhibition of insulin-stimulated whole-body and muscle-specific glucose uptake. Diabetes 2001;50(11):2585–90. link1

[11] Rodrigues B, Cam MC, Jian K, Lim F, Sambandam N, Shepherd G. Differential effects of streptozotocin-induced diabetes on cardiac lipoprotein lipase activity. Diabetes 1997;46(8):1346–53. link1

[12] Kim MS, Wang F, Puthanveetil P, Kewalramani G, Hosseini-Beheshti E, Ng N, et al. Protein kinase D is a key regulator of cardiomyocyte lipoprotein lipase secretion after diabetes. Circ Res 2008;103(3):252–60. link1

[13] Sambandam N, Abrahani MA, St Pierre E, Al-Atar O, Cam MC, Rodrigues B. Localization of lipoprotein lipase in the diabetic heart: regulation by acute changes in insulin. Arterioscler Thromb Vasc Biol 1999;19(6):1526–34. link1

[14] Puri K, Lal N, Shang R, Ghosh S, Flibotte S, Dyer R, et al. Diabetes mellitus severity and a switch from using lipoprotein lipase to adipose-derived fatty acid results in a cardiac metabolic signature that embraces cell death. J Am Heart Assoc 2019;8(21):e014022. link1

[15] Wilson AJ, Gill EK, Abudalo RA, Edgar KS, Watson CJ, Grieve DJ. Reactive oxygen species signalling in the diabetic heart: emerging prospect for therapeutic targeting. Heart 2018;104(4):293–9. link1

[16] Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 2018;9(2):119. link1

[17] Kessler G, Friedman J. Metabolism of fatty acids and glucose. Circulation 1998;98(13):1351. link1

[18] Borradaile NM, Schaffer JE. Lipotoxicity in the heart. Curr Hypertens Rep 2005;7(6):412–7. link1

[19] Van de Weijer T, Schrauwen-Hinderling VB, Schrauwen P. Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovasc Res 2011;92(1):10–8. link1

[20] Wende AR, Symons JD, Abel ED. Mechanisms of lipotoxicity in the cardiovascular system. Curr Hypertens Rep 2012;14(6):517–31. link1

[21] Schulze PC, Drosatos K, Goldberg IJ. Lipid use and misuse by the heart. Circ Res 2016;118(11):1736–51. link1

[22] Park TS, Hu Y, Noh HL, Drosatos K, Okajima K, Buchanan J, et al. Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. J Lipid Res 2008;49(10):2101–12. link1

[23] Levak-Frank S, Radner H, Walsh A, Stollberger R, Knipping G, Hoefler G, et al. Muscle-specific overexpression of lipoprotein lipase causes a severe myopathy characterized by proliferation of mitochondria and peroxisomes in transgenic mice. J Clin Invest 1995;96(2):976–86. link1

[24] Yagyu H, Chen G, Yokoyama M, Hirata K, Augustus A, Kako Y, et al. Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy. J Clin Invest 2003;111(3):419–26. link1

[25] Kim MS, Wang F, Puthanveetil P, Kewalramani G, Innis S, Marzban L, et al. Cleavage of protein kinase D after acute hypoinsulinemia prevents excessive lipoprotein lipase-mediated cardiac triglyceride accumulation. Diabetes 2009;58(11):2464–75. link1

[26] Noh HL, Okajima K, Molkentin JD, Homma S, Goldberg IJ. Acute lipoprotein lipase deletion in adult mice leads to dyslipidemia and cardiac dysfunction. Am J Physiol Endocrinol Metab 2006;291(4):E755–60. link1

[27] Augustus AS, Buchanan J, Park TS, Hirata K, Noh HL, Sun J, et al. Loss of lipoprotein lipase-derived fatty acids leads to increased cardiac glucose metabolism and heart dysfunction. J Biol Chem 2006;281(13):8716–23. link1

[28] Ritchie RH, Abel ED. Basic mechanisms of diabetic heart disease. Circ Res 2020;126(11):1501–25. link1

[29] Regan TJ, Ahmed S, Haider B, Moschos C, Weisse A. Diabetic cardiomyopathy: experimental and clinical observations. N J Med 1994;91(11):776–8. link1

[30] Boudina S, Abel ED. Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord 2010;11(1):31–9. link1

[31] Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 2004;25(4):543–67. link1

[32] Severson DL. Diabetic cardiomyopathy: recent evidence from mouse models of type 1 and type 2 diabetes. Can J Physiol Pharmacol 2004;82(10):813–23. link1

[33] Shehadeh A, Regan TJ. Cardiac consequences of diabetes mellitus. Clin Cardiol 1995;18(6):301–5. link1

[34] Fein FS, Sonnenblick EH. Diabetic cardiomyopathy. Prog Cardiovasc Dis 1985;27(4):255–70. link1

[35] Dhalla NS, Liu X, Panagia V, Takeda N. Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovasc Res 1998;40(2):239–47. link1

[36] Laakso M. Heart in diabetes: a microvascular disease. Diabetes Care 2011;34 (Suppl 2):S145–9. link1

[37] Taha M, Lopaschuk GD. Alterations in energy metabolism in cardiomyopathies. Ann Med 2007;39(8):594–607. link1

[38] Sung MM, Hamza SM, Dyck JR. Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets. Antioxid Redox Signal 2015;22(17):1606–30. link1

[39] Wan A, Rodrigues B. Endothelial cell–cardiomyocyte crosstalk in diabetic cardiomyopathy. Cardiovasc Res 2016;111(3):172–83. link1

[40] Chong CR, Clarke K, Levelt E. Metabolic remodeling in diabetic cardiomyopathy. Cardiovasc Res 2017;113(4):422–30. link1

[41] Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev 2010;90(1):207–58. link1

[42] Murashige D, Jang C, Neinast M, Edwards JJ, Cowan A, Hyman MC, et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 2020;370(6514):364–8. link1

[43] Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta 2014;1841(7):919–33. link1

[44] Olivecrona G. Role of lipoprotein lipase in lipid metabolism. Curr Opin Lipidol 2016;27(3):233–41. link1

[45] Eckel RH. Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N Engl J Med 1989;320(16):1060–8. link1

[46] Enerbäck S, Gimble JM. Lipoprotein lipase gene expression: physiological regulators at the transcriptional and post-transcriptional level. Biochim Biophys Acta 1993;1169(2):107–25. link1

[47] Young SG, Davies BS, Voss CV, Gin P, Weinstein MM, Tontonoz P, et al. GPIHBP1, an endothelial cell transporter for lipoprotein lipase. J Lipid Res 2011;52(11):1869–84. link1

[48] Young SG, Fong LG, Beigneux AP, Allan CM, He C, Jiang H, et al. GPIHBP1 and lipoprotein lipase, partners in plasma triglyceride metabolism. Cell Metab 2019;30(1):51–65. link1

[49] Cryer A. The role of the endothelium in myocardial lipoprotein dynamics. Mol Cell Biochem 1989;88(1–2):7–15. link1

[50] Merkel M, Eckel RH, Goldberg IJ. Lipoprotein lipase: genetics, lipid uptake, and regulation. J Lipid Res 2002;43(12):1997–2006. link1

[51] Obunike JC, Lutz EP, Li Z, Paka L, Katopodis T, Strickland DK, et al. Transcytosis of lipoprotein lipase across cultured endothelial cells requires both heparan sulfate proteoglycans and the very low density lipoprotein receptor. J Biol Chem 2001;276(12):8934–41. link1

[52] Davies BS, Beigneux AP, Barnes RH, Tu Y, Gin P, Weinstein MM, et al. GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries. Cell Metab 2010;12(1):42–52. link1

[53] Gin P, Yin L, Davies BS, Weinstein MM, Ryan RO, Bensadoun A, et al. The acidic domain of GPIHBP1 is important for the binding of lipoprotein lipase and chylomicrons. J Biol Chem 2008;283(43):29554–62. link1

[54] Basu D, Goldberg IJ. Regulation of lipoprotein lipase-mediated lipolysis of triglycerides. Curr Opin Lipidol 2020;31(3):154–60. link1

[55] Beigneux AP, Allan CM, Sandoval NP, Cho GW, Heizer PJ, Jung RS, et al. Lipoprotein lipase is active as a monomer. Proc Natl Acad Sci USA 2019;116 (13):6319–28. link1

[56] Arora R, Nimonkar AV, Baird D, Wang C, Chiu CH, Horton PA, et al. Structure of lipoprotein lipase in complex with GPIHBP1. Proc Natl Acad Sci USA 2019;116 (21):10360–5. link1

[57] Beigneux AP, Davies BS, Gin P, Weinstein MM, Farber E, Qiao X, et al. Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab 2007;5(4):279–91. link1

[58] Sonnenburg WK, Yu D, Lee EC, Xiong W, Gololobov G, Key B, et al. GPIHBP1 stabilizes lipoprotein lipase and prevents its inhibition by angiopoietin-like 3 and angiopoietin-like 4. J Lipid Res 2009;50(12):2421–9. link1

[59] Rios JJ, Shastry S, Jasso J, Hauser N, Garg A, Bensadoun A, et al. Deletion of GPIHBP1 causing severe chylomicronemia. J Inherit Metab Dis 2012;35 (3):531–40. link1

[60] Miyashita K, Lutz J, Hudgins LC, Toib D, Ashraf AP, Song W, et al. Chylomicronemia from GPIHBP1 autoantibodies. J Lipid Res 2020;61 (11):1365–76. link1

[61] Wang Y, Puthanveetil P, Wang F, Kim MS, Abrahani A, Rodrigues B. Severity of diabetes governs vascular lipoprotein lipase by affecting enzyme dimerization and disassembly. Diabetes 2011;60(8):2041–50. link1

[62] Pulinilkunnil T, Qi D, Ghosh S, Cheung C, Yip P, Varghese J, et al. Circulating triglyceride lipolysis facilitates lipoprotein lipase translocation from cardiomyocyte to myocardial endothelial lining. Cardiovasc Res 2003;59 (3):788–97. link1

[63] Chiu PLA, Wang F, Lal N, Wang Y, Zhang D, Hussein B, et al. Endothelial cells respond to hyperglycemia by increasing the LPL transporter GPIHBP1. Am J Physiol Endocrinol Metab 2014;306(11):E1274–83. link1

[64] Doolittle MH, Ben-Zeev O, Elovson J, Martin D, Kirchgessner TG. The response of lipoprotein lipase to feeding and fasting. Evidence for posttranslational regulation. J Biol Chem 1990;265(8):4570–7. link1

[65] Karwi QG, Sun Q, Lopaschuk GD. The contribution of cardiac fatty acid oxidation to diabetic cardiomyopathy severity. Cells 2021;10(11):3259. link1

[66] Kashiwazaki K, Hirano T, Yoshino G, Kurokawa M, Tajima H, Adachi M. Decreased release of lipoprotein lipase is associated with vascular endothelial damage in NIDDM patients with microalbuminuria. Diabetes Care 1998;21 (11):2016–20. link1

[67] Taskinen MR, Nikkila EA. Lipoprotein lipase activity of adipose tissue and skeletal muscle in insulin-deficient human diabetes. Relation to high-density and very-low-density lipoproteins and response to treatment. Diabetologia 1979;17(6):351–6. link1

[68] Qi D, Pulinilkunnil T, An D, Ghosh S, Abrahani A, Andrew A, et al. Single-dose dexamethasone induces whole-body insulin resistance and alters both cardiac fatty acid and carbohydrate metabolism. Diabetes 2004;53 (7):1790–7. link1

[69] Kewalramani G, Puthanveetil P, Kim MS, Wang F, Lee V, Hau N, et al. Acute dexamethasone-induced increase in cardiac lipoprotein lipase requires activation of both Akt and stress kinases. Am J Physiol Endocrinol Metab 2008;295(1):E137–47. link1

[70] Sambandam N, Abrahani MA, Craig S, Al-Atar O, Jeon E, Rodrigues B. Metabolism of VLDL is increased in streptozotocin-induced diabetic rat hearts. Am J Physiol Heart Circ Physiol 2000;278(6):H1874–82. link1

[71] Pulinilkunnil T, Abrahani A, Varghese J, Chan N, Tang I, Ghosh S, et al. Evidence for rapid ‘‘metabolic switching” through lipoprotein lipase occupation of endothelial-binding sites. J Mol Cell Cardiol 2003;35(9):1093–103. link1

[72] Pulinilkunnil T, An D, Yip P, Chan N, Qi D, Ghosh S, et al. Palmitoyl lysophosphatidylcholine mediated mobilization of LPL to the coronary luminal surface requires PKC activation. J Mol Cell Cardiol 2004;37(5):931–8. link1

[73] An D, Pulinilkunnil T, Qi D, Ghosh S, Abrahani A, Rodrigues B. The metabolic ‘‘switch” AMPK regulates cardiac heparin-releasable lipoprotein lipase. Am J Physiol Endocrinol Metab 2005;288(1):E246–53. link1

[74] Kewalramani G, An D, Kim MS, Ghosh S, Qi D, Abrahani A, et al. AMPK control of myocardial fatty acid metabolism fluctuates with the intensity of insulindeficient diabetes. J Mol Cell Cardiol 2007;42(2):333–42. link1

[75] Kim MS, Kewalramani G, Puthanveetil P, Lee V, Kumar U, An D, et al. Acute diabetes moderates trafficking of cardiac lipoprotein lipase through p38 mitogen-activated protein kinase-dependent actin cytoskeleton organization. Diabetes 2008;57(1):64–76. link1

[76] Pulinilkunnil T, An D, Ghosh S, Qi D, Kewalramani G, Yuen G, et al. Lysophosphatidic acid-mediated augmentation of cardiomyocyte lipoprotein lipase involves actin cytoskeleton reorganization. Am J Physiol Heart Circ Physiol 2005;288(6):H2802–10. link1

[77] Wang F, Kim MS, Puthanveetil P, Kewalramani G, Deppe S, Ghosh S, et al. Endothelial heparanase secretion after acute hypoinsulinemia is regulated by glucose and fatty acid. Am J Physiol Heart Circ Physiol 2009;296(4): H1108–16. link1

[78] Wang Y, Zhang D, Chiu AP, Wan A, Neumaier K, Vlodavsky I, et al. Endothelial heparanase regulates heart metabolism by stimulating lipoprotein lipase secretion from cardiomyocytes. Arterioscler Thromb Vasc Biol 2013;33 (5):894–902. link1

[79] Wang F, Wang Y, Kim MS, Puthanveetil P, Ghosh S, Luciani DS, et al. Glucoseinduced endothelial heparanase secretion requires cortical and stress actin reorganization. Cardiovasc Res 2010;87(1):127–36. link1

[80] Pillarisetti S, Paka L, Sasaki A, Vanni-Reyes T, Yin B, Parthasarathy N, et al. Endothelial cell heparanase modulation of lipoprotein lipase activity. Evidence that heparan sulfate oligosaccharide is an extracellular chaperone. J Biol Chem 1997;272(25):15753–9. link1

[81] Wang Y, Chiu AP, Neumaier K, Wang F, Zhang D, Hussein B, et al. Endothelial cell heparanase taken up by cardiomyocytes regulates lipoprotein lipase transfer to the coronary lumen after diabetes. Diabetes 2014;63(8):2643–55. link1

[82] Zhang D, Wan A, Chiu AP, Wang Y, Wang F, Neumaier K, et al. Hyperglycemiainduced secretion of endothelial heparanase stimulates a vascular endothelial growth factor autocrine network in cardiomyocytes that promotes recruitment of lipoprotein lipase. Arterioscler Thromb Vasc Biol 2013;33 (12):2830–8. link1

[83] Chiu AP, Wan A, Lal N, Zhang D, Wang F, Vlodavsky I, et al. Cardiomyocyte VEGF regulates endothelial cell GPIHBP1 to relocate lipoprotein lipase to the coronary lumen during diabetes mellitus. Arterioscler Thromb Vasc Biol 2016;36(1):145–55. link1

[84] Lal N, Chiu AP, Wang F, Zhang D, Jia J, Wan A, et al. Loss of VEGFB and its signaling in the diabetic heart is associated with increased cell death signaling. Am J Physiol Heart Circ Physiol 2017;312(6):H1163–75. link1

[85] Iozzo RV, San Antonio JD. Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 2001;108(3):349–55. link1

[86] Iozzo RV. Heparan sulfate proteoglycans: intricate molecules with intriguing functions. J Clin Invest 2001;108(2):165–7. link1

[87] Bame KJ. Heparanases: endoglycosidases that degrade heparan sulfate proteoglycans. Glycobiology 2001;11(6):91R–8R. link1

[88] Vlodavsky I, Friedmann Y, Elkin M, Aingorn H, Atzmon R, Ishai-Michaeli R, et al. Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat Med 1999;5(7):793–802. link1

[89] Fairbanks MB, Mildner AM, Leone JW, Cavey GS, Mathews WR, Drong RF, et al. Processing of the human heparanase precursor and evidence that the active enzyme is a heterodimer. J Biol Chem 1999;274(42):29587–90. link1

[90] Gingis-Velitski S, Zetser A, Kaplan V, Ben-Zaken O, Cohen E, Levy-Adam F, et al. Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans. J Biol Chem 2004;279(42):44084–92. link1

[91] Ben-Zaken O, Shafat I, Gingis-Velitski S, Bangio H, Kelson IK, Alergand T, et al. Low and high affinity receptors mediate cellular uptake of heparanase. Int J Biochem Cell Biol 2008;40(3):530–42. link1

[92] Vlodavsky I, Singh P, Boyango I, Gutter-Kapon L, Elkin M, Sanderson RD, et al. Heparanase: from basic research to therapeutic applications in cancer and inflammation. Drug Resist Updat 2016;29:54–75. link1

[93] Pikas DS, Li JP, Vlodavsky I, Lindahl U. Substrate specificity of heparanases from human hepatoma and platelets. J Biol Chem 1998;273(30):18770–7. link1

[94] Abboud-Jarrous G, Rangini-Guetta Z, Aingorn H, Atzmon R, Elgavish S, Peretz T, et al. Site-directed mutagenesis, proteolytic cleavage, and activation of human proheparanase. J Biol Chem 2005;280(14):13568–75. link1

[95] Wang F, Wang Y, Zhang D, Puthanveetil P, Johnson JD, Rodrigues B. Fatty acidinduced nuclear translocation of heparanase uncouples glucose metabolism in endothelial cells. Arterioscler Thromb Vasc Biol 2012;32(2):406–14. link1

[96] Zcharia E, Metzger S, Chajek-Shaul T, Aingorn H, Elkin M, Friedmann Y, et al. Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. FASEB J 2004;18(2):252–63. link1

[97] Ilan N, Elkin M, Vlodavsky I. Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 2006;38(12):2018–39. link1

[98] Holmes DI, Zachary I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol 2005;6(2):209. link1

[99] Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and proangiogenic therapies. Genes Cancer 2011;2(12):1097–105. link1

[100] Karpanen T, Bry M, Ollila HM, Seppänen-Laakso T, Liimatta E, Leskinen H, et al. Overexpression of vascular endothelial growth factor-B in mouse heart alters cardiac lipid metabolism and induces myocardial hypertrophy. Circ Res 2008;103(9):1018–26. link1

[101] Mould AW, Greco SA, Cahill MM, Tonks ID, Bellomo D, Patterson C, et al. Transgenic overexpression of vascular endothelial growth factor-B isoforms by endothelial cells potentiates postnatal vessel growth in vivo and in vitro. Circ Res 2005;97(6):e60–70. link1

[102] Zhang F, Tang Z, Hou X, Lennartsson J, Li Y, Koch AW, et al. VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis. Proc Natl Acad Sci USA 2009;106 (15):6152–7. link1

[103] Kivelä R, Bry M, Robciuc MR, Räsänen M, Taavitsainen M, Silvola JM, et al. VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart. EMBO Mol Med 2014;6(3):307–21. link1

[104] Robciuc MR, Kivelä R, Williams IM, de Boer JF, van Dijk TH, Elamaa H, et al. VEGFB/VEGFR1-induced expansion of adipose vasculature counteracts obesity and related metabolic complications. Cell Metab 2016;23(4): 712–24. link1

[105] Olofsson B, Pajusola K, Kaipainen A, von Euler G, Joukov V, Saksela O, et al. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci USA 1996;93(6):2576–81. link1

[106] Shibuya M. Structure and dual function of vascular endothelial growth factor receptor-1 (Flt-1). Int J Biochem Cell Biol 2001;33(4):409–20. link1

[107] Boucher JM, Clark RP, Chong DC, Citrin KM, Wylie LA, Bautch VL. Dynamic alterations in decoy VEGF receptor-1 stability regulate angiogenesis. Nat Commun 2017;8(1):15699. link1

[108] Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996;380(6573):435–9. link1

[109] Miquerol L, Langille BL, Nagy A. Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development 2000;127(18):3941–6. link1

[110] Arjunan P, Lin X, Tang Z, Du Y, Kumar A, Liu L, et al. VEGF-B is a potent antioxidant. Proc Natl Acad Sci USA 2018;115(41):10351–6. link1

[111] Sun Y, Jin K, Childs JT, Xie L, Mao XO, Greenberg DA. Increased severity of cerebral ischemic injury in vascular endothelial growth factor-B-deficient mice. J Cereb Blood Flow Metab 2004;24(10):1146–52. link1

[112] Huusko J, Lottonen L, Merentie M, Gurzeler E, Anisimov A, Miyanohara A, et al. AAV9-mediated VEGF-B gene transfer improves systolic function in progressive left ventricular hypertrophy. Mol Ther 2012;20(12):2212–21. link1

[113] Pepe M, Mamdani M, Zentilin L, Csiszar A, Qanud K, Zacchigna S, et al. Intramyocardial VEGF-B167 gene delivery delays the progression towards congestive failure in dogs with pacing-induced dilated cardiomyopathy. Circ Res 2010;106(12):1893–903. link1

[114] Räsänen M, Degerman J, Nissinen TA, Miinalainen I, Kerkelä R, Siltanen A, et al. VEGF-B gene therapy inhibits doxorubicin-induced cardiotoxicity by endothelial protection. Proc Natl Acad Sci USA 2016;113(46):13144–9. link1

[115] Zentilin L, Puligadda U, Lionetti V, Zacchigna S, Collesi C, Pattarini L, et al. Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J 2010;24(5):1467–78. link1

[116] Larsen TS, Aasum E. Metabolic (in)flexibility of the diabetic heart. Cardiovasc Drugs Ther 2008;22(2):91–5. link1

[117] Hinkel R, Howe A, Renner S, Ng J, Lee S, Klett K, et al. Diabetes mellitusinduced microvascular destabilization in the myocardium. J Am Coll Cardiol 2017;69(2):131–43. link1

[118] Adameova A, Dhalla NS. Role of microangiopathy in diabetic cardiomyopathy. Heart Fail Rev 2014;19(1):25–33. link1

[119] Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ. Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 2002;51(6):1938–48. link1

[120] Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, et al. Myocardial cell death in human diabetes. Circ Res 2000;87(12):1123–32. link1

Related Research