Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 21, Issue 2 doi: 10.1016/j.eng.2022.07.008

Prospects of Photovoltaic Technology

a LONGi Green Energy Technology Co., Ltd., Xi’an 710016, China
b LONGi Central R&D Institute, Xixian 712000, China

Available online: 2023-02-20

Next Previous

Figures

Fig. 1

Fig. 2

References

[ 1 ] Fischer M, Woodhous M, Herritsch S, Trube J. International technology roadmap for photovoltaic. 11th ed. Berlin: VDMA; 2021. link1

[ 2 ] Bellini E. Saudi Arabia’s second PV tender draws world record low bid of $0.0104/kWh [Internet]. Andrea Jeremias: PV Magazine; 2021 Apr 8 [cited 2022 Mar 17]. Available from: https://www.pv-magazine.com/2021/04/08/ saudi-arabias-second-pv-tender-draws-world-record-low-bid-of-0104-kwh/. link1

[ 3 ] Richter A, Müller R, Benick J, Feldmann F, Steinhauser B, Reichel C, et al. Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses. Nat Energy 2021;6(4): 429–38. link1

[ 4 ] National Renewable Energy Laboratory (NREL). Best research-cell efficiency Chart. Washington, DC: NREL; 2022.

[ 5 ] Dhabi A. Renewable power generation costs in 2020. Masdar City: International Renewable Energy Agency (IRENA); 2021. link1

[ 6 ] Dhabi A. World energy transitions outlook: 1.5 C pathway. Masdar City: International Renewable Energy Agency (IRENA); 2021. link1

[ 7 ] Benick J. TOPCon–overcoming fundamental bottlenecks to a new world-record silicon solar cell [Internet]. Hyde hofste: Fraunhofer Institute for Solar Energy systems ISE; 2016 Sep [cited 2022 Jun 10]. Available from: https://www.ise. fraunhofer.de/en/research-projects/topcon.html. link1

[ 8 ] Feldmann F, Bivour M, Reichel C, Steinkemper H, Hermle M, Glunz SW. Tunnel oxide passivated contacts as an alternative to partial rear contacts. Sol Energy Mater Sol Cells 2014;131:46–50. link1

[ 9 ] Hollemann C, Haase F, Rienäcker M, Barnscheidt V, Krügener J, Folchert N, et al. Separating the two polarities of the POLO contacts of an 26.1%-efficient IBC solar cell. Sci Rep 2020;10(1):658. link1

[10] Yamamoto K, Yoshikawa K, Uzu H, Adachi D. High-efficiency heterojunction crystalline Si solar cells. Jpn J Appl Phys 2018;57(8S3):08RB20. link1

[11] Ru X, Qu M, Wang J, Ruan T, Yang M, Peng F, et al. 25.11% efficiency silicon heterojunction solar cell with low deposition rate intrinsic amorphous silicon buffer layers. Sol Energy Mater Sol Cells 2020;215:110643. link1

[12] Bellini E. Longi’s heterojunction solar cell hits 26.5% [Internet]. Andrea Jeremias: PV Magazine; 2022 Jun 24 [cited 2022 Jul 20]. Available from: https://www.pv-magazine.com/2022/06/24/longis-heterojunction-solar-cellhits-26-5/. link1

[13] Bellini E. JinkoSolar achieves 25.7% efficiency for n-type TOPCon solar cell [Internet]. Andrea Jeremias: PV Magazine; 2022 Apr 27 [cited 2022 Mar 17]. Available from: https://www.pv-magazine.com/2022/04/27/jinkosolarachieves-25-7-efficiency-for-n-type-topcon-solar-cell/. link1

[14] Bellini E. Longi achieves 25.47% efficiency for gallium-doped p-type heterojunction solar cell [Internet]. Andrea Jeremias: PV Magazine; 2022 Mar 30 [cited 2022 Mar 17]. Available from: https://www.pv-magazine.com/ 2022/03/30/longi-achieves-25-47-efficiency-for-gallium-doped-p-typeheterojunction-solar-cell/. link1

[15] Rau U, Kirchartz T. Charge carrier collection and contact selectivity in solar cells. Adv Mater Interfaces 2019;6(20):1900252. link1

[16] Wurfel U, Cuevas A, Wurfel P. Charge carrier separation in solar cells. IEEE J Photovolt 2015;5(1):461–9. link1

[17] Allen TG, Bullock J, Yang X, Javey A, De Wolf S. Passivating contacts for crystalline silicon solar cells. Nat Energy 2019;4(11):914–28. link1

[18] Long W, Yin S, Peng F, Yang M, Fang L, Ru X, et al. On the limiting efficiency for silicon heterojunction solar cells. Sol Energy Mater Sol Cells 2021;231:111291. link1

[19] Chee KWA, Ghosh BK, Saad I, Hong Y, Xia QH, Gao P, et al. Recent advancements in carrier-selective contacts for high-efficiency crystalline silicon solar cells: industrially evolving approach. Nano Energy 2022;95:106899. link1

[20] Krügener J, Rienäcker M, Schäfer S, Sanchez M, Wolter S, Brendel R, et al. Photonic crystals for highly efficient Silicon single junction solar cells. Sol Energy Mater Sol Cells 2021;233:111337. link1

[21] Shockley W, Queisser HJ. Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys 1961;32(3):510–9. link1

[22] Geisz JF, France RM, Schulte KL, Steiner MA, Norman AG, Guthrey HL, et al. Sixjunction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nat Energy 2020;5(4):326–35. link1

[23] Ehrler B, Alarcón-Lladó E, Tabernig SW, Veeken T, Garnett EC, Polman A. Photovoltaics reaching for the Shockley–Queisser limit. ACS Energy Lett 2020;5(9):3029–33. link1

[24] Bellini E. CSEM, EPFL achieve 31.25% efficiency for tandem perovskitesilicon solar cell [Internet]. Andrea Jeremias: PV Magazine; 2022 Jul 7 [cited 2022 Jul 24]. Available from: https://www.pv-magazine.com/2022/ 07/07/csem-epfl-achieve-31-25-efficiency-for-tandem-perovskite-siliconsolar-cell/. link1

[25] Kim M, Jeong J, Lu H, Lee TK, Eickemeyer FT, Liu Y, et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science 2022;375(6578):302–6. link1

[26] Xiang W, Liu S, Tress W. A review on the stability of inorganic metal halide perovskites: challenges and opportunities for stable solar cells. Energy Environ Sci 2021;14(4):2090–113. link1

[27] Chao L, Niu T, Xia Y, Chen Y, Huang W. Ionic liquid for perovskite solar cells: an emerging solvent engineering technology. Acc Mater Res 2021;2(11):1059–70. link1

[28] Kundu S, Kelly TL. In situ studies of the degradation mechanisms of perovskite solar cells. EcoMat 2020;2(2):e12025. link1

[29] Wang J, Gao Z, Yang J, Lv M, Chen H, Xue DJ, et al. Controlling the crystallization kinetics of lead-free tin halide perovskites for high performance green photovoltaics. Adv Energy Mater 2021;11(39):2102131. link1

[30] Kim HS, An YJ, Kwak JI, Kim HJ, Jung HS, Park NG. Sustainable green process for environmentally viable perovskite solar cells. ACS Energy Lett 2022;7(3): 1154–77. link1

[31] Yang J, Lim EL, Tan L, Wei Z. Ink engineering in blade-coating large-area perovskite solar cells. Adv Energy Mater 2022:2200975. link1

[32] longi.com [Internet]. Xi’an: LONGi; c2022 [cited 2022 Mar 17]. Available from: https://www.longi.com/en/solutions/detail/complement/. link1

[33] Jia J, Seitz LC, Benck JD, Huo Y, Chen Y, Ng JWD, et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30. Nat Commun 2016;7(1):13237. link1

[34] International Energy Agency (IEA). Net zero by 2050: a roadmap for the global energy sector. Report. Paris: IEA; 2021 May.

Related Research